Evaluate
\frac{9}{2}=4.5
Factor
\frac{3 ^ {2}}{2} = 4\frac{1}{2} = 4.5
Share
Copied to clipboard
5\times 2+\left(-1\right)^{2007}+\sqrt{\frac{1}{4}}-|-5|
Divide 5 by \frac{1}{2} by multiplying 5 by the reciprocal of \frac{1}{2}.
10+\left(-1\right)^{2007}+\sqrt{\frac{1}{4}}-|-5|
Multiply 5 and 2 to get 10.
10-1+\sqrt{\frac{1}{4}}-|-5|
Calculate -1 to the power of 2007 and get -1.
9+\sqrt{\frac{1}{4}}-|-5|
Subtract 1 from 10 to get 9.
9+\frac{1}{2}-|-5|
Rewrite the square root of the division \frac{1}{4} as the division of square roots \frac{\sqrt{1}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\frac{18}{2}+\frac{1}{2}-|-5|
Convert 9 to fraction \frac{18}{2}.
\frac{18+1}{2}-|-5|
Since \frac{18}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{19}{2}-|-5|
Add 18 and 1 to get 19.
\frac{19}{2}-5
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -5 is 5.
\frac{19}{2}-\frac{10}{2}
Convert 5 to fraction \frac{10}{2}.
\frac{19-10}{2}
Since \frac{19}{2} and \frac{10}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{2}
Subtract 10 from 19 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}