Evaluate
35x-18y
Expand
35x-18y
Share
Copied to clipboard
\frac{5}{6}\times 42x+\frac{5}{6}\left(-12\right)y-8y
Use the distributive property to multiply \frac{5}{6} by 42x-12y.
\frac{5\times 42}{6}x+\frac{5}{6}\left(-12\right)y-8y
Express \frac{5}{6}\times 42 as a single fraction.
\frac{210}{6}x+\frac{5}{6}\left(-12\right)y-8y
Multiply 5 and 42 to get 210.
35x+\frac{5}{6}\left(-12\right)y-8y
Divide 210 by 6 to get 35.
35x+\frac{5\left(-12\right)}{6}y-8y
Express \frac{5}{6}\left(-12\right) as a single fraction.
35x+\frac{-60}{6}y-8y
Multiply 5 and -12 to get -60.
35x-10y-8y
Divide -60 by 6 to get -10.
35x-18y
Combine -10y and -8y to get -18y.
\frac{5}{6}\times 42x+\frac{5}{6}\left(-12\right)y-8y
Use the distributive property to multiply \frac{5}{6} by 42x-12y.
\frac{5\times 42}{6}x+\frac{5}{6}\left(-12\right)y-8y
Express \frac{5}{6}\times 42 as a single fraction.
\frac{210}{6}x+\frac{5}{6}\left(-12\right)y-8y
Multiply 5 and 42 to get 210.
35x+\frac{5}{6}\left(-12\right)y-8y
Divide 210 by 6 to get 35.
35x+\frac{5\left(-12\right)}{6}y-8y
Express \frac{5}{6}\left(-12\right) as a single fraction.
35x+\frac{-60}{6}y-8y
Multiply 5 and -12 to get -60.
35x-10y-8y
Divide -60 by 6 to get -10.
35x-18y
Combine -10y and -8y to get -18y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}