Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4x^{2}+8x+5
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=8 ab=-4\times 5=-20
Factor the expression by grouping. First, the expression needs to be rewritten as -4x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
-1,20 -2,10 -4,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -20.
-1+20=19 -2+10=8 -4+5=1
Calculate the sum for each pair.
a=10 b=-2
The solution is the pair that gives sum 8.
\left(-4x^{2}+10x\right)+\left(-2x+5\right)
Rewrite -4x^{2}+8x+5 as \left(-4x^{2}+10x\right)+\left(-2x+5\right).
-2x\left(2x-5\right)-\left(2x-5\right)
Factor out -2x in the first and -1 in the second group.
\left(2x-5\right)\left(-2x-1\right)
Factor out common term 2x-5 by using distributive property.
-4x^{2}+8x+5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\left(-4\right)\times 5}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\left(-4\right)\times 5}}{2\left(-4\right)}
Square 8.
x=\frac{-8±\sqrt{64+16\times 5}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-8±\sqrt{64+80}}{2\left(-4\right)}
Multiply 16 times 5.
x=\frac{-8±\sqrt{144}}{2\left(-4\right)}
Add 64 to 80.
x=\frac{-8±12}{2\left(-4\right)}
Take the square root of 144.
x=\frac{-8±12}{-8}
Multiply 2 times -4.
x=\frac{4}{-8}
Now solve the equation x=\frac{-8±12}{-8} when ± is plus. Add -8 to 12.
x=-\frac{1}{2}
Reduce the fraction \frac{4}{-8} to lowest terms by extracting and canceling out 4.
x=-\frac{20}{-8}
Now solve the equation x=\frac{-8±12}{-8} when ± is minus. Subtract 12 from -8.
x=\frac{5}{2}
Reduce the fraction \frac{-20}{-8} to lowest terms by extracting and canceling out 4.
-4x^{2}+8x+5=-4\left(x-\left(-\frac{1}{2}\right)\right)\left(x-\frac{5}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{2} for x_{1} and \frac{5}{2} for x_{2}.
-4x^{2}+8x+5=-4\left(x+\frac{1}{2}\right)\left(x-\frac{5}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-4x^{2}+8x+5=-4\times \frac{-2x-1}{-2}\left(x-\frac{5}{2}\right)
Add \frac{1}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-4x^{2}+8x+5=-4\times \frac{-2x-1}{-2}\times \frac{-2x+5}{-2}
Subtract \frac{5}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-4x^{2}+8x+5=-4\times \frac{\left(-2x-1\right)\left(-2x+5\right)}{-2\left(-2\right)}
Multiply \frac{-2x-1}{-2} times \frac{-2x+5}{-2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-4x^{2}+8x+5=-4\times \frac{\left(-2x-1\right)\left(-2x+5\right)}{4}
Multiply -2 times -2.
-4x^{2}+8x+5=-\left(-2x-1\right)\left(-2x+5\right)
Cancel out 4, the greatest common factor in -4 and 4.