Solve for x (complex solution)
x=\frac{-7+\sqrt{95}i}{24}\approx -0.291666667+0.406116431i
x=\frac{-\sqrt{95}i-7}{24}\approx -0.291666667-0.406116431i
Graph
Share
Copied to clipboard
12x^{2}+7x+5=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
12x^{2}+7x+5-2=2-2
Subtract 2 from both sides of the equation.
12x^{2}+7x+5-2=0
Subtracting 2 from itself leaves 0.
12x^{2}+7x+3=0
Subtract 2 from 5.
x=\frac{-7±\sqrt{7^{2}-4\times 12\times 3}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 7 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 12\times 3}}{2\times 12}
Square 7.
x=\frac{-7±\sqrt{49-48\times 3}}{2\times 12}
Multiply -4 times 12.
x=\frac{-7±\sqrt{49-144}}{2\times 12}
Multiply -48 times 3.
x=\frac{-7±\sqrt{-95}}{2\times 12}
Add 49 to -144.
x=\frac{-7±\sqrt{95}i}{2\times 12}
Take the square root of -95.
x=\frac{-7±\sqrt{95}i}{24}
Multiply 2 times 12.
x=\frac{-7+\sqrt{95}i}{24}
Now solve the equation x=\frac{-7±\sqrt{95}i}{24} when ± is plus. Add -7 to i\sqrt{95}.
x=\frac{-\sqrt{95}i-7}{24}
Now solve the equation x=\frac{-7±\sqrt{95}i}{24} when ± is minus. Subtract i\sqrt{95} from -7.
x=\frac{-7+\sqrt{95}i}{24} x=\frac{-\sqrt{95}i-7}{24}
The equation is now solved.
12x^{2}+7x+5=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
12x^{2}+7x+5-5=2-5
Subtract 5 from both sides of the equation.
12x^{2}+7x=2-5
Subtracting 5 from itself leaves 0.
12x^{2}+7x=-3
Subtract 5 from 2.
\frac{12x^{2}+7x}{12}=-\frac{3}{12}
Divide both sides by 12.
x^{2}+\frac{7}{12}x=-\frac{3}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}+\frac{7}{12}x=-\frac{1}{4}
Reduce the fraction \frac{-3}{12} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{7}{12}x+\left(\frac{7}{24}\right)^{2}=-\frac{1}{4}+\left(\frac{7}{24}\right)^{2}
Divide \frac{7}{12}, the coefficient of the x term, by 2 to get \frac{7}{24}. Then add the square of \frac{7}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{12}x+\frac{49}{576}=-\frac{1}{4}+\frac{49}{576}
Square \frac{7}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{12}x+\frac{49}{576}=-\frac{95}{576}
Add -\frac{1}{4} to \frac{49}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{24}\right)^{2}=-\frac{95}{576}
Factor x^{2}+\frac{7}{12}x+\frac{49}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{24}\right)^{2}}=\sqrt{-\frac{95}{576}}
Take the square root of both sides of the equation.
x+\frac{7}{24}=\frac{\sqrt{95}i}{24} x+\frac{7}{24}=-\frac{\sqrt{95}i}{24}
Simplify.
x=\frac{-7+\sqrt{95}i}{24} x=\frac{-\sqrt{95}i-7}{24}
Subtract \frac{7}{24} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}