Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-7x^{2}+34x+5
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=34 ab=-7\times 5=-35
Factor the expression by grouping. First, the expression needs to be rewritten as -7x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
-1,35 -5,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -35.
-1+35=34 -5+7=2
Calculate the sum for each pair.
a=35 b=-1
The solution is the pair that gives sum 34.
\left(-7x^{2}+35x\right)+\left(-x+5\right)
Rewrite -7x^{2}+34x+5 as \left(-7x^{2}+35x\right)+\left(-x+5\right).
7x\left(-x+5\right)-x+5
Factor out 7x in -7x^{2}+35x.
\left(-x+5\right)\left(7x+1\right)
Factor out common term -x+5 by using distributive property.
-7x^{2}+34x+5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-34±\sqrt{34^{2}-4\left(-7\right)\times 5}}{2\left(-7\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-34±\sqrt{1156-4\left(-7\right)\times 5}}{2\left(-7\right)}
Square 34.
x=\frac{-34±\sqrt{1156+28\times 5}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-34±\sqrt{1156+140}}{2\left(-7\right)}
Multiply 28 times 5.
x=\frac{-34±\sqrt{1296}}{2\left(-7\right)}
Add 1156 to 140.
x=\frac{-34±36}{2\left(-7\right)}
Take the square root of 1296.
x=\frac{-34±36}{-14}
Multiply 2 times -7.
x=\frac{2}{-14}
Now solve the equation x=\frac{-34±36}{-14} when ± is plus. Add -34 to 36.
x=-\frac{1}{7}
Reduce the fraction \frac{2}{-14} to lowest terms by extracting and canceling out 2.
x=-\frac{70}{-14}
Now solve the equation x=\frac{-34±36}{-14} when ± is minus. Subtract 36 from -34.
x=5
Divide -70 by -14.
-7x^{2}+34x+5=-7\left(x-\left(-\frac{1}{7}\right)\right)\left(x-5\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{7} for x_{1} and 5 for x_{2}.
-7x^{2}+34x+5=-7\left(x+\frac{1}{7}\right)\left(x-5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-7x^{2}+34x+5=-7\times \frac{-7x-1}{-7}\left(x-5\right)
Add \frac{1}{7} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-7x^{2}+34x+5=\left(-7x-1\right)\left(x-5\right)
Cancel out 7, the greatest common factor in -7 and 7.