Solve for a
a = \frac{11}{7} = 1\frac{4}{7} \approx 1.571428571
Share
Copied to clipboard
5+3a+12=7a-\left(9-10a\right)+4
Use the distributive property to multiply 3 by a+4.
17+3a=7a-\left(9-10a\right)+4
Add 5 and 12 to get 17.
17+3a=7a-9-\left(-10a\right)+4
To find the opposite of 9-10a, find the opposite of each term.
17+3a=7a-9+10a+4
The opposite of -10a is 10a.
17+3a=17a-9+4
Combine 7a and 10a to get 17a.
17+3a=17a-5
Add -9 and 4 to get -5.
17+3a-17a=-5
Subtract 17a from both sides.
17-14a=-5
Combine 3a and -17a to get -14a.
-14a=-5-17
Subtract 17 from both sides.
-14a=-22
Subtract 17 from -5 to get -22.
a=\frac{-22}{-14}
Divide both sides by -14.
a=\frac{11}{7}
Reduce the fraction \frac{-22}{-14} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}