Solve for c
c=-4
c=1
Share
Copied to clipboard
5+c^{2}-2c+1+5+\left(c+4\right)^{2}=35
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(c-1\right)^{2}.
6+c^{2}-2c+5+\left(c+4\right)^{2}=35
Add 5 and 1 to get 6.
11+c^{2}-2c+\left(c+4\right)^{2}=35
Add 6 and 5 to get 11.
11+c^{2}-2c+c^{2}+8c+16=35
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(c+4\right)^{2}.
11+2c^{2}-2c+8c+16=35
Combine c^{2} and c^{2} to get 2c^{2}.
11+2c^{2}+6c+16=35
Combine -2c and 8c to get 6c.
27+2c^{2}+6c=35
Add 11 and 16 to get 27.
27+2c^{2}+6c-35=0
Subtract 35 from both sides.
-8+2c^{2}+6c=0
Subtract 35 from 27 to get -8.
-4+c^{2}+3c=0
Divide both sides by 2.
c^{2}+3c-4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=3 ab=1\left(-4\right)=-4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as c^{2}+ac+bc-4. To find a and b, set up a system to be solved.
-1,4 -2,2
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -4.
-1+4=3 -2+2=0
Calculate the sum for each pair.
a=-1 b=4
The solution is the pair that gives sum 3.
\left(c^{2}-c\right)+\left(4c-4\right)
Rewrite c^{2}+3c-4 as \left(c^{2}-c\right)+\left(4c-4\right).
c\left(c-1\right)+4\left(c-1\right)
Factor out c in the first and 4 in the second group.
\left(c-1\right)\left(c+4\right)
Factor out common term c-1 by using distributive property.
c=1 c=-4
To find equation solutions, solve c-1=0 and c+4=0.
5+c^{2}-2c+1+5+\left(c+4\right)^{2}=35
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(c-1\right)^{2}.
6+c^{2}-2c+5+\left(c+4\right)^{2}=35
Add 5 and 1 to get 6.
11+c^{2}-2c+\left(c+4\right)^{2}=35
Add 6 and 5 to get 11.
11+c^{2}-2c+c^{2}+8c+16=35
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(c+4\right)^{2}.
11+2c^{2}-2c+8c+16=35
Combine c^{2} and c^{2} to get 2c^{2}.
11+2c^{2}+6c+16=35
Combine -2c and 8c to get 6c.
27+2c^{2}+6c=35
Add 11 and 16 to get 27.
27+2c^{2}+6c-35=0
Subtract 35 from both sides.
-8+2c^{2}+6c=0
Subtract 35 from 27 to get -8.
2c^{2}+6c-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-6±\sqrt{6^{2}-4\times 2\left(-8\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 6 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-6±\sqrt{36-4\times 2\left(-8\right)}}{2\times 2}
Square 6.
c=\frac{-6±\sqrt{36-8\left(-8\right)}}{2\times 2}
Multiply -4 times 2.
c=\frac{-6±\sqrt{36+64}}{2\times 2}
Multiply -8 times -8.
c=\frac{-6±\sqrt{100}}{2\times 2}
Add 36 to 64.
c=\frac{-6±10}{2\times 2}
Take the square root of 100.
c=\frac{-6±10}{4}
Multiply 2 times 2.
c=\frac{4}{4}
Now solve the equation c=\frac{-6±10}{4} when ± is plus. Add -6 to 10.
c=1
Divide 4 by 4.
c=-\frac{16}{4}
Now solve the equation c=\frac{-6±10}{4} when ± is minus. Subtract 10 from -6.
c=-4
Divide -16 by 4.
c=1 c=-4
The equation is now solved.
5+c^{2}-2c+1+5+\left(c+4\right)^{2}=35
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(c-1\right)^{2}.
6+c^{2}-2c+5+\left(c+4\right)^{2}=35
Add 5 and 1 to get 6.
11+c^{2}-2c+\left(c+4\right)^{2}=35
Add 6 and 5 to get 11.
11+c^{2}-2c+c^{2}+8c+16=35
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(c+4\right)^{2}.
11+2c^{2}-2c+8c+16=35
Combine c^{2} and c^{2} to get 2c^{2}.
11+2c^{2}+6c+16=35
Combine -2c and 8c to get 6c.
27+2c^{2}+6c=35
Add 11 and 16 to get 27.
2c^{2}+6c=35-27
Subtract 27 from both sides.
2c^{2}+6c=8
Subtract 27 from 35 to get 8.
\frac{2c^{2}+6c}{2}=\frac{8}{2}
Divide both sides by 2.
c^{2}+\frac{6}{2}c=\frac{8}{2}
Dividing by 2 undoes the multiplication by 2.
c^{2}+3c=\frac{8}{2}
Divide 6 by 2.
c^{2}+3c=4
Divide 8 by 2.
c^{2}+3c+\left(\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}+3c+\frac{9}{4}=4+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
c^{2}+3c+\frac{9}{4}=\frac{25}{4}
Add 4 to \frac{9}{4}.
\left(c+\frac{3}{2}\right)^{2}=\frac{25}{4}
Factor c^{2}+3c+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c+\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
c+\frac{3}{2}=\frac{5}{2} c+\frac{3}{2}=-\frac{5}{2}
Simplify.
c=1 c=-4
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}