Solve for a
a=-\frac{35}{3}+\frac{4}{3}i\approx -11.666666667+1.333333333i
Share
Copied to clipboard
40+4\left(4i-40\right)-2\times 4a-\left(4a-\left(-20\right)\right)=0
Multiply both sides of the equation by 8, the least common multiple of 2,4,8.
40+16i-160-2\times 4a-\left(4a-\left(-20\right)\right)=0
Use the distributive property to multiply 4 by 4i-40.
-2\times 4a-\left(4a-\left(-20\right)\right)+40-160+16i=0
Combine the real and imaginary parts in 40+16i-160.
-2\times 4a-\left(4a-\left(-20\right)\right)-120+16i=0
Add 40 to -160.
-8a-\left(4a-\left(-20\right)\right)-120+16i=0
Multiply -2 and 4 to get -8.
-8a-\left(4a+20\right)-120+16i=0
The opposite of -20 is 20.
-8a-4a-20-120+16i=0
To find the opposite of 4a+20, find the opposite of each term.
-8a-4a-140+16i=0
Add -20 to -120.
-12a-140+16i=0
Combine -8a and -4a to get -12a.
-12a+16i=140
Add 140 to both sides. Anything plus zero gives itself.
-12a=140-16i
Subtract 16i from both sides.
a=\frac{140-16i}{-12}
Divide both sides by -12.
a=-\frac{35}{3}+\frac{4}{3}i
Divide 140-16i by -12 to get -\frac{35}{3}+\frac{4}{3}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}