Evaluate
\frac{129}{25}=5.16
Factor
\frac{3 \cdot 43}{5 ^ {2}} = 5\frac{4}{25} = 5.16
Quiz
Arithmetic
5 problems similar to:
5 + \frac { 1 } { 5 + \frac { 1 } { 1 - \frac { 1 } { 5 } } } =
Share
Copied to clipboard
5+\frac{1}{5+\frac{1}{\frac{5}{5}-\frac{1}{5}}}
Convert 1 to fraction \frac{5}{5}.
5+\frac{1}{5+\frac{1}{\frac{5-1}{5}}}
Since \frac{5}{5} and \frac{1}{5} have the same denominator, subtract them by subtracting their numerators.
5+\frac{1}{5+\frac{1}{\frac{4}{5}}}
Subtract 1 from 5 to get 4.
5+\frac{1}{5+1\times \frac{5}{4}}
Divide 1 by \frac{4}{5} by multiplying 1 by the reciprocal of \frac{4}{5}.
5+\frac{1}{5+\frac{5}{4}}
Multiply 1 and \frac{5}{4} to get \frac{5}{4}.
5+\frac{1}{\frac{20}{4}+\frac{5}{4}}
Convert 5 to fraction \frac{20}{4}.
5+\frac{1}{\frac{20+5}{4}}
Since \frac{20}{4} and \frac{5}{4} have the same denominator, add them by adding their numerators.
5+\frac{1}{\frac{25}{4}}
Add 20 and 5 to get 25.
5+1\times \frac{4}{25}
Divide 1 by \frac{25}{4} by multiplying 1 by the reciprocal of \frac{25}{4}.
5+\frac{4}{25}
Multiply 1 and \frac{4}{25} to get \frac{4}{25}.
\frac{125}{25}+\frac{4}{25}
Convert 5 to fraction \frac{125}{25}.
\frac{125+4}{25}
Since \frac{125}{25} and \frac{4}{25} have the same denominator, add them by adding their numerators.
\frac{129}{25}
Add 125 and 4 to get 129.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}