Evaluate
\frac{\sqrt{5}}{10}+5\approx 5.223606798
Share
Copied to clipboard
5+\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}+\frac{1}{5+\sqrt{5}}-\frac{1}{5-\sqrt{5}}
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
5+\frac{\sqrt{5}}{5}+\frac{1}{5+\sqrt{5}}-\frac{1}{5-\sqrt{5}}
The square of \sqrt{5} is 5.
5+\frac{\sqrt{5}}{5}+\frac{5-\sqrt{5}}{\left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right)}-\frac{1}{5-\sqrt{5}}
Rationalize the denominator of \frac{1}{5+\sqrt{5}} by multiplying numerator and denominator by 5-\sqrt{5}.
5+\frac{\sqrt{5}}{5}+\frac{5-\sqrt{5}}{5^{2}-\left(\sqrt{5}\right)^{2}}-\frac{1}{5-\sqrt{5}}
Consider \left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
5+\frac{\sqrt{5}}{5}+\frac{5-\sqrt{5}}{25-5}-\frac{1}{5-\sqrt{5}}
Square 5. Square \sqrt{5}.
5+\frac{\sqrt{5}}{5}+\frac{5-\sqrt{5}}{20}-\frac{1}{5-\sqrt{5}}
Subtract 5 from 25 to get 20.
5+\frac{\sqrt{5}}{5}+\frac{5-\sqrt{5}}{20}-\frac{5+\sqrt{5}}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}
Rationalize the denominator of \frac{1}{5-\sqrt{5}} by multiplying numerator and denominator by 5+\sqrt{5}.
5+\frac{\sqrt{5}}{5}+\frac{5-\sqrt{5}}{20}-\frac{5+\sqrt{5}}{5^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
5+\frac{\sqrt{5}}{5}+\frac{5-\sqrt{5}}{20}-\frac{5+\sqrt{5}}{25-5}
Square 5. Square \sqrt{5}.
5+\frac{\sqrt{5}}{5}+\frac{5-\sqrt{5}}{20}-\frac{5+\sqrt{5}}{20}
Subtract 5 from 25 to get 20.
\frac{5\times 5}{5}+\frac{\sqrt{5}}{5}+\frac{5-\sqrt{5}}{20}-\frac{5+\sqrt{5}}{20}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{5}{5}.
\frac{5\times 5+\sqrt{5}}{5}+\frac{5-\sqrt{5}}{20}-\frac{5+\sqrt{5}}{20}
Since \frac{5\times 5}{5} and \frac{\sqrt{5}}{5} have the same denominator, add them by adding their numerators.
\frac{25+\sqrt{5}}{5}+\frac{5-\sqrt{5}}{20}-\frac{5+\sqrt{5}}{20}
Do the multiplications in 5\times 5+\sqrt{5}.
\frac{4\left(25+\sqrt{5}\right)}{20}+\frac{5-\sqrt{5}}{20}-\frac{5+\sqrt{5}}{20}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 20 is 20. Multiply \frac{25+\sqrt{5}}{5} times \frac{4}{4}.
\frac{4\left(25+\sqrt{5}\right)+5-\sqrt{5}}{20}-\frac{5+\sqrt{5}}{20}
Since \frac{4\left(25+\sqrt{5}\right)}{20} and \frac{5-\sqrt{5}}{20} have the same denominator, add them by adding their numerators.
\frac{100+4\sqrt{5}+5-\sqrt{5}}{20}-\frac{5+\sqrt{5}}{20}
Do the multiplications in 4\left(25+\sqrt{5}\right)+5-\sqrt{5}.
\frac{105+3\sqrt{5}}{20}-\frac{5+\sqrt{5}}{20}
Do the calculations in 100+4\sqrt{5}+5-\sqrt{5}.
\frac{105+3\sqrt{5}-\left(5+\sqrt{5}\right)}{20}
Since \frac{105+3\sqrt{5}}{20} and \frac{5+\sqrt{5}}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{105+3\sqrt{5}-5-\sqrt{5}}{20}
Do the multiplications in 105+3\sqrt{5}-\left(5+\sqrt{5}\right).
\frac{100+2\sqrt{5}}{20}
Do the calculations in 105+3\sqrt{5}-5-\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}