Solve for x
x=\frac{\sqrt{21}}{12}+\frac{1}{4}\approx 0.631881308
x=-\frac{\sqrt{21}}{12}+\frac{1}{4}\approx -0.131881308
Graph
Share
Copied to clipboard
4x\times 2x+2x\left(-9\right)+12x\times 2x=3-2x\times 2x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x.
8xx+2x\left(-9\right)+12x\times 2x=3-2x\times 2x
Multiply 4 and 2 to get 8.
8x^{2}+2x\left(-9\right)+12x\times 2x=3-2x\times 2x
Multiply x and x to get x^{2}.
8x^{2}-18x+12x\times 2x=3-2x\times 2x
Multiply 2 and -9 to get -18.
8x^{2}-18x+12x^{2}\times 2=3-2x\times 2x
Multiply x and x to get x^{2}.
8x^{2}-18x+24x^{2}=3-2x\times 2x
Multiply 12 and 2 to get 24.
32x^{2}-18x=3-2x\times 2x
Combine 8x^{2} and 24x^{2} to get 32x^{2}.
32x^{2}-18x=3-2x^{2}\times 2
Multiply x and x to get x^{2}.
32x^{2}-18x=3-4x^{2}
Multiply -2 and 2 to get -4.
32x^{2}-18x-3=-4x^{2}
Subtract 3 from both sides.
32x^{2}-18x-3+4x^{2}=0
Add 4x^{2} to both sides.
36x^{2}-18x-3=0
Combine 32x^{2} and 4x^{2} to get 36x^{2}.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 36\left(-3\right)}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, -18 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 36\left(-3\right)}}{2\times 36}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-144\left(-3\right)}}{2\times 36}
Multiply -4 times 36.
x=\frac{-\left(-18\right)±\sqrt{324+432}}{2\times 36}
Multiply -144 times -3.
x=\frac{-\left(-18\right)±\sqrt{756}}{2\times 36}
Add 324 to 432.
x=\frac{-\left(-18\right)±6\sqrt{21}}{2\times 36}
Take the square root of 756.
x=\frac{18±6\sqrt{21}}{2\times 36}
The opposite of -18 is 18.
x=\frac{18±6\sqrt{21}}{72}
Multiply 2 times 36.
x=\frac{6\sqrt{21}+18}{72}
Now solve the equation x=\frac{18±6\sqrt{21}}{72} when ± is plus. Add 18 to 6\sqrt{21}.
x=\frac{\sqrt{21}}{12}+\frac{1}{4}
Divide 18+6\sqrt{21} by 72.
x=\frac{18-6\sqrt{21}}{72}
Now solve the equation x=\frac{18±6\sqrt{21}}{72} when ± is minus. Subtract 6\sqrt{21} from 18.
x=-\frac{\sqrt{21}}{12}+\frac{1}{4}
Divide 18-6\sqrt{21} by 72.
x=\frac{\sqrt{21}}{12}+\frac{1}{4} x=-\frac{\sqrt{21}}{12}+\frac{1}{4}
The equation is now solved.
4x\times 2x+2x\left(-9\right)+12x\times 2x=3-2x\times 2x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x.
8xx+2x\left(-9\right)+12x\times 2x=3-2x\times 2x
Multiply 4 and 2 to get 8.
8x^{2}+2x\left(-9\right)+12x\times 2x=3-2x\times 2x
Multiply x and x to get x^{2}.
8x^{2}-18x+12x\times 2x=3-2x\times 2x
Multiply 2 and -9 to get -18.
8x^{2}-18x+12x^{2}\times 2=3-2x\times 2x
Multiply x and x to get x^{2}.
8x^{2}-18x+24x^{2}=3-2x\times 2x
Multiply 12 and 2 to get 24.
32x^{2}-18x=3-2x\times 2x
Combine 8x^{2} and 24x^{2} to get 32x^{2}.
32x^{2}-18x=3-2x^{2}\times 2
Multiply x and x to get x^{2}.
32x^{2}-18x=3-4x^{2}
Multiply -2 and 2 to get -4.
32x^{2}-18x+4x^{2}=3
Add 4x^{2} to both sides.
36x^{2}-18x=3
Combine 32x^{2} and 4x^{2} to get 36x^{2}.
\frac{36x^{2}-18x}{36}=\frac{3}{36}
Divide both sides by 36.
x^{2}+\left(-\frac{18}{36}\right)x=\frac{3}{36}
Dividing by 36 undoes the multiplication by 36.
x^{2}-\frac{1}{2}x=\frac{3}{36}
Reduce the fraction \frac{-18}{36} to lowest terms by extracting and canceling out 18.
x^{2}-\frac{1}{2}x=\frac{1}{12}
Reduce the fraction \frac{3}{36} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{12}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{12}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{7}{48}
Add \frac{1}{12} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=\frac{7}{48}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{7}{48}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{21}}{12} x-\frac{1}{4}=-\frac{\sqrt{21}}{12}
Simplify.
x=\frac{\sqrt{21}}{12}+\frac{1}{4} x=-\frac{\sqrt{21}}{12}+\frac{1}{4}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}