Solve for x
x = -\frac{83}{48} = -1\frac{35}{48} \approx -1.729166667
Graph
Share
Copied to clipboard
4x-\frac{624}{12}+\frac{25}{12}=32x-\frac{9}{6}
Convert -52 to fraction -\frac{624}{12}.
4x+\frac{-624+25}{12}=32x-\frac{9}{6}
Since -\frac{624}{12} and \frac{25}{12} have the same denominator, add them by adding their numerators.
4x-\frac{599}{12}=32x-\frac{9}{6}
Add -624 and 25 to get -599.
4x-\frac{599}{12}=32x-\frac{3}{2}
Reduce the fraction \frac{9}{6} to lowest terms by extracting and canceling out 3.
4x-\frac{599}{12}-32x=-\frac{3}{2}
Subtract 32x from both sides.
-28x-\frac{599}{12}=-\frac{3}{2}
Combine 4x and -32x to get -28x.
-28x=-\frac{3}{2}+\frac{599}{12}
Add \frac{599}{12} to both sides.
-28x=-\frac{18}{12}+\frac{599}{12}
Least common multiple of 2 and 12 is 12. Convert -\frac{3}{2} and \frac{599}{12} to fractions with denominator 12.
-28x=\frac{-18+599}{12}
Since -\frac{18}{12} and \frac{599}{12} have the same denominator, add them by adding their numerators.
-28x=\frac{581}{12}
Add -18 and 599 to get 581.
x=\frac{\frac{581}{12}}{-28}
Divide both sides by -28.
x=\frac{581}{12\left(-28\right)}
Express \frac{\frac{581}{12}}{-28} as a single fraction.
x=\frac{581}{-336}
Multiply 12 and -28 to get -336.
x=-\frac{83}{48}
Reduce the fraction \frac{581}{-336} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}