Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-5x^{2}+4x=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-5x^{2}+4x-4=4-4
Subtract 4 from both sides of the equation.
-5x^{2}+4x-4=0
Subtracting 4 from itself leaves 0.
x=\frac{-4±\sqrt{4^{2}-4\left(-5\right)\left(-4\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 4 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-5\right)\left(-4\right)}}{2\left(-5\right)}
Square 4.
x=\frac{-4±\sqrt{16+20\left(-4\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-4±\sqrt{16-80}}{2\left(-5\right)}
Multiply 20 times -4.
x=\frac{-4±\sqrt{-64}}{2\left(-5\right)}
Add 16 to -80.
x=\frac{-4±8i}{2\left(-5\right)}
Take the square root of -64.
x=\frac{-4±8i}{-10}
Multiply 2 times -5.
x=\frac{-4+8i}{-10}
Now solve the equation x=\frac{-4±8i}{-10} when ± is plus. Add -4 to 8i.
x=\frac{2}{5}-\frac{4}{5}i
Divide -4+8i by -10.
x=\frac{-4-8i}{-10}
Now solve the equation x=\frac{-4±8i}{-10} when ± is minus. Subtract 8i from -4.
x=\frac{2}{5}+\frac{4}{5}i
Divide -4-8i by -10.
x=\frac{2}{5}-\frac{4}{5}i x=\frac{2}{5}+\frac{4}{5}i
The equation is now solved.
-5x^{2}+4x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}+4x}{-5}=\frac{4}{-5}
Divide both sides by -5.
x^{2}+\frac{4}{-5}x=\frac{4}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-\frac{4}{5}x=\frac{4}{-5}
Divide 4 by -5.
x^{2}-\frac{4}{5}x=-\frac{4}{5}
Divide 4 by -5.
x^{2}-\frac{4}{5}x+\left(-\frac{2}{5}\right)^{2}=-\frac{4}{5}+\left(-\frac{2}{5}\right)^{2}
Divide -\frac{4}{5}, the coefficient of the x term, by 2 to get -\frac{2}{5}. Then add the square of -\frac{2}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{5}x+\frac{4}{25}=-\frac{4}{5}+\frac{4}{25}
Square -\frac{2}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{5}x+\frac{4}{25}=-\frac{16}{25}
Add -\frac{4}{5} to \frac{4}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{5}\right)^{2}=-\frac{16}{25}
Factor x^{2}-\frac{4}{5}x+\frac{4}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{5}\right)^{2}}=\sqrt{-\frac{16}{25}}
Take the square root of both sides of the equation.
x-\frac{2}{5}=\frac{4}{5}i x-\frac{2}{5}=-\frac{4}{5}i
Simplify.
x=\frac{2}{5}+\frac{4}{5}i x=\frac{2}{5}-\frac{4}{5}i
Add \frac{2}{5} to both sides of the equation.