Solve for x
x=-\frac{9y}{14}+\frac{3}{7}
Solve for y
y=-\frac{14x}{9}+\frac{2}{3}
Graph
Share
Copied to clipboard
4x-3y=18x+6y-6
Use the distributive property to multiply 6 by y-1.
4x-3y-18x=6y-6
Subtract 18x from both sides.
-14x-3y=6y-6
Combine 4x and -18x to get -14x.
-14x=6y-6+3y
Add 3y to both sides.
-14x=9y-6
Combine 6y and 3y to get 9y.
\frac{-14x}{-14}=\frac{9y-6}{-14}
Divide both sides by -14.
x=\frac{9y-6}{-14}
Dividing by -14 undoes the multiplication by -14.
x=-\frac{9y}{14}+\frac{3}{7}
Divide 9y-6 by -14.
4x-3y=18x+6y-6
Use the distributive property to multiply 6 by y-1.
4x-3y-6y=18x-6
Subtract 6y from both sides.
4x-9y=18x-6
Combine -3y and -6y to get -9y.
-9y=18x-6-4x
Subtract 4x from both sides.
-9y=14x-6
Combine 18x and -4x to get 14x.
\frac{-9y}{-9}=\frac{14x-6}{-9}
Divide both sides by -9.
y=\frac{14x-6}{-9}
Dividing by -9 undoes the multiplication by -9.
y=-\frac{14x}{9}+\frac{2}{3}
Divide 14x-6 by -9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}