Solve for x
x = \frac{41}{4} = 10\frac{1}{4} = 10.25
Graph
Share
Copied to clipboard
x-\left(-2x+1\right)-7x=-8\left(-3+x-2\right)
Combine 4x and -3x to get x.
x-\left(-2x\right)-1-7x=-8\left(-3+x-2\right)
To find the opposite of -2x+1, find the opposite of each term.
x+2x-1-7x=-8\left(-3+x-2\right)
The opposite of -2x is 2x.
3x-1-7x=-8\left(-3+x-2\right)
Combine x and 2x to get 3x.
-4x-1=-8\left(-3+x-2\right)
Combine 3x and -7x to get -4x.
-4x-1=-8\left(-5+x\right)
Subtract 2 from -3 to get -5.
-4x-1=40-8x
Use the distributive property to multiply -8 by -5+x.
-4x-1+8x=40
Add 8x to both sides.
4x-1=40
Combine -4x and 8x to get 4x.
4x=40+1
Add 1 to both sides.
4x=41
Add 40 and 1 to get 41.
x=\frac{41}{4}
Divide both sides by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}