Solve for x
x=-\frac{23}{90}\approx -0.255555556
Graph
Share
Copied to clipboard
4x-3-\left(-\frac{20}{5}-\frac{6}{5}\right)-x=-3x+\frac{2}{3}
Convert -4 to fraction -\frac{20}{5}.
4x-3-\frac{-20-6}{5}-x=-3x+\frac{2}{3}
Since -\frac{20}{5} and \frac{6}{5} have the same denominator, subtract them by subtracting their numerators.
4x-3-\left(-\frac{26}{5}\right)-x=-3x+\frac{2}{3}
Subtract 6 from -20 to get -26.
4x-3+\frac{26}{5}-x=-3x+\frac{2}{3}
The opposite of -\frac{26}{5} is \frac{26}{5}.
4x-\frac{15}{5}+\frac{26}{5}-x=-3x+\frac{2}{3}
Convert -3 to fraction -\frac{15}{5}.
4x+\frac{-15+26}{5}-x=-3x+\frac{2}{3}
Since -\frac{15}{5} and \frac{26}{5} have the same denominator, add them by adding their numerators.
4x+\frac{11}{5}-x=-3x+\frac{2}{3}
Add -15 and 26 to get 11.
3x+\frac{11}{5}=-3x+\frac{2}{3}
Combine 4x and -x to get 3x.
3x+\frac{11}{5}+3x=\frac{2}{3}
Add 3x to both sides.
6x+\frac{11}{5}=\frac{2}{3}
Combine 3x and 3x to get 6x.
6x=\frac{2}{3}-\frac{11}{5}
Subtract \frac{11}{5} from both sides.
6x=\frac{10}{15}-\frac{33}{15}
Least common multiple of 3 and 5 is 15. Convert \frac{2}{3} and \frac{11}{5} to fractions with denominator 15.
6x=\frac{10-33}{15}
Since \frac{10}{15} and \frac{33}{15} have the same denominator, subtract them by subtracting their numerators.
6x=-\frac{23}{15}
Subtract 33 from 10 to get -23.
x=\frac{-\frac{23}{15}}{6}
Divide both sides by 6.
x=\frac{-23}{15\times 6}
Express \frac{-\frac{23}{15}}{6} as a single fraction.
x=\frac{-23}{90}
Multiply 15 and 6 to get 90.
x=-\frac{23}{90}
Fraction \frac{-23}{90} can be rewritten as -\frac{23}{90} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}