Solve for x
x=-8
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
4x^{2}+32x=6\left(x+8\right)
Use the distributive property to multiply 4x by x+8.
4x^{2}+32x=6x+48
Use the distributive property to multiply 6 by x+8.
4x^{2}+32x-6x=48
Subtract 6x from both sides.
4x^{2}+26x=48
Combine 32x and -6x to get 26x.
4x^{2}+26x-48=0
Subtract 48 from both sides.
x=\frac{-26±\sqrt{26^{2}-4\times 4\left(-48\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 26 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-26±\sqrt{676-4\times 4\left(-48\right)}}{2\times 4}
Square 26.
x=\frac{-26±\sqrt{676-16\left(-48\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-26±\sqrt{676+768}}{2\times 4}
Multiply -16 times -48.
x=\frac{-26±\sqrt{1444}}{2\times 4}
Add 676 to 768.
x=\frac{-26±38}{2\times 4}
Take the square root of 1444.
x=\frac{-26±38}{8}
Multiply 2 times 4.
x=\frac{12}{8}
Now solve the equation x=\frac{-26±38}{8} when ± is plus. Add -26 to 38.
x=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{64}{8}
Now solve the equation x=\frac{-26±38}{8} when ± is minus. Subtract 38 from -26.
x=-8
Divide -64 by 8.
x=\frac{3}{2} x=-8
The equation is now solved.
4x^{2}+32x=6\left(x+8\right)
Use the distributive property to multiply 4x by x+8.
4x^{2}+32x=6x+48
Use the distributive property to multiply 6 by x+8.
4x^{2}+32x-6x=48
Subtract 6x from both sides.
4x^{2}+26x=48
Combine 32x and -6x to get 26x.
\frac{4x^{2}+26x}{4}=\frac{48}{4}
Divide both sides by 4.
x^{2}+\frac{26}{4}x=\frac{48}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{13}{2}x=\frac{48}{4}
Reduce the fraction \frac{26}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{13}{2}x=12
Divide 48 by 4.
x^{2}+\frac{13}{2}x+\left(\frac{13}{4}\right)^{2}=12+\left(\frac{13}{4}\right)^{2}
Divide \frac{13}{2}, the coefficient of the x term, by 2 to get \frac{13}{4}. Then add the square of \frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{2}x+\frac{169}{16}=12+\frac{169}{16}
Square \frac{13}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{13}{2}x+\frac{169}{16}=\frac{361}{16}
Add 12 to \frac{169}{16}.
\left(x+\frac{13}{4}\right)^{2}=\frac{361}{16}
Factor x^{2}+\frac{13}{2}x+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{4}\right)^{2}}=\sqrt{\frac{361}{16}}
Take the square root of both sides of the equation.
x+\frac{13}{4}=\frac{19}{4} x+\frac{13}{4}=-\frac{19}{4}
Simplify.
x=\frac{3}{2} x=-8
Subtract \frac{13}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}