Solve for x
x=\frac{\sqrt{1289}-27}{40}\approx 0.222566154
x=\frac{-\sqrt{1289}-27}{40}\approx -1.572566154
Graph
Share
Copied to clipboard
20x^{2}+24x=7-3x
Use the distributive property to multiply 4x by 5x+6.
20x^{2}+24x-7=-3x
Subtract 7 from both sides.
20x^{2}+24x-7+3x=0
Add 3x to both sides.
20x^{2}+27x-7=0
Combine 24x and 3x to get 27x.
x=\frac{-27±\sqrt{27^{2}-4\times 20\left(-7\right)}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, 27 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-27±\sqrt{729-4\times 20\left(-7\right)}}{2\times 20}
Square 27.
x=\frac{-27±\sqrt{729-80\left(-7\right)}}{2\times 20}
Multiply -4 times 20.
x=\frac{-27±\sqrt{729+560}}{2\times 20}
Multiply -80 times -7.
x=\frac{-27±\sqrt{1289}}{2\times 20}
Add 729 to 560.
x=\frac{-27±\sqrt{1289}}{40}
Multiply 2 times 20.
x=\frac{\sqrt{1289}-27}{40}
Now solve the equation x=\frac{-27±\sqrt{1289}}{40} when ± is plus. Add -27 to \sqrt{1289}.
x=\frac{-\sqrt{1289}-27}{40}
Now solve the equation x=\frac{-27±\sqrt{1289}}{40} when ± is minus. Subtract \sqrt{1289} from -27.
x=\frac{\sqrt{1289}-27}{40} x=\frac{-\sqrt{1289}-27}{40}
The equation is now solved.
20x^{2}+24x=7-3x
Use the distributive property to multiply 4x by 5x+6.
20x^{2}+24x+3x=7
Add 3x to both sides.
20x^{2}+27x=7
Combine 24x and 3x to get 27x.
\frac{20x^{2}+27x}{20}=\frac{7}{20}
Divide both sides by 20.
x^{2}+\frac{27}{20}x=\frac{7}{20}
Dividing by 20 undoes the multiplication by 20.
x^{2}+\frac{27}{20}x+\left(\frac{27}{40}\right)^{2}=\frac{7}{20}+\left(\frac{27}{40}\right)^{2}
Divide \frac{27}{20}, the coefficient of the x term, by 2 to get \frac{27}{40}. Then add the square of \frac{27}{40} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{27}{20}x+\frac{729}{1600}=\frac{7}{20}+\frac{729}{1600}
Square \frac{27}{40} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{27}{20}x+\frac{729}{1600}=\frac{1289}{1600}
Add \frac{7}{20} to \frac{729}{1600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{27}{40}\right)^{2}=\frac{1289}{1600}
Factor x^{2}+\frac{27}{20}x+\frac{729}{1600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{27}{40}\right)^{2}}=\sqrt{\frac{1289}{1600}}
Take the square root of both sides of the equation.
x+\frac{27}{40}=\frac{\sqrt{1289}}{40} x+\frac{27}{40}=-\frac{\sqrt{1289}}{40}
Simplify.
x=\frac{\sqrt{1289}-27}{40} x=\frac{-\sqrt{1289}-27}{40}
Subtract \frac{27}{40} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}