Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

59x-9^{2}=99999x^{2}
Combine 4x and 55x to get 59x.
59x-81=99999x^{2}
Calculate 9 to the power of 2 and get 81.
59x-81-99999x^{2}=0
Subtract 99999x^{2} from both sides.
-99999x^{2}+59x-81=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-59±\sqrt{59^{2}-4\left(-99999\right)\left(-81\right)}}{2\left(-99999\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -99999 for a, 59 for b, and -81 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-59±\sqrt{3481-4\left(-99999\right)\left(-81\right)}}{2\left(-99999\right)}
Square 59.
x=\frac{-59±\sqrt{3481+399996\left(-81\right)}}{2\left(-99999\right)}
Multiply -4 times -99999.
x=\frac{-59±\sqrt{3481-32399676}}{2\left(-99999\right)}
Multiply 399996 times -81.
x=\frac{-59±\sqrt{-32396195}}{2\left(-99999\right)}
Add 3481 to -32399676.
x=\frac{-59±\sqrt{32396195}i}{2\left(-99999\right)}
Take the square root of -32396195.
x=\frac{-59±\sqrt{32396195}i}{-199998}
Multiply 2 times -99999.
x=\frac{-59+\sqrt{32396195}i}{-199998}
Now solve the equation x=\frac{-59±\sqrt{32396195}i}{-199998} when ± is plus. Add -59 to i\sqrt{32396195}.
x=\frac{-\sqrt{32396195}i+59}{199998}
Divide -59+i\sqrt{32396195} by -199998.
x=\frac{-\sqrt{32396195}i-59}{-199998}
Now solve the equation x=\frac{-59±\sqrt{32396195}i}{-199998} when ± is minus. Subtract i\sqrt{32396195} from -59.
x=\frac{59+\sqrt{32396195}i}{199998}
Divide -59-i\sqrt{32396195} by -199998.
x=\frac{-\sqrt{32396195}i+59}{199998} x=\frac{59+\sqrt{32396195}i}{199998}
The equation is now solved.
59x-9^{2}=99999x^{2}
Combine 4x and 55x to get 59x.
59x-81=99999x^{2}
Calculate 9 to the power of 2 and get 81.
59x-81-99999x^{2}=0
Subtract 99999x^{2} from both sides.
59x-99999x^{2}=81
Add 81 to both sides. Anything plus zero gives itself.
-99999x^{2}+59x=81
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-99999x^{2}+59x}{-99999}=\frac{81}{-99999}
Divide both sides by -99999.
x^{2}+\frac{59}{-99999}x=\frac{81}{-99999}
Dividing by -99999 undoes the multiplication by -99999.
x^{2}-\frac{59}{99999}x=\frac{81}{-99999}
Divide 59 by -99999.
x^{2}-\frac{59}{99999}x=-\frac{9}{11111}
Reduce the fraction \frac{81}{-99999} to lowest terms by extracting and canceling out 9.
x^{2}-\frac{59}{99999}x+\left(-\frac{59}{199998}\right)^{2}=-\frac{9}{11111}+\left(-\frac{59}{199998}\right)^{2}
Divide -\frac{59}{99999}, the coefficient of the x term, by 2 to get -\frac{59}{199998}. Then add the square of -\frac{59}{199998} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{59}{99999}x+\frac{3481}{39999200004}=-\frac{9}{11111}+\frac{3481}{39999200004}
Square -\frac{59}{199998} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{59}{99999}x+\frac{3481}{39999200004}=-\frac{32396195}{39999200004}
Add -\frac{9}{11111} to \frac{3481}{39999200004} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{59}{199998}\right)^{2}=-\frac{32396195}{39999200004}
Factor x^{2}-\frac{59}{99999}x+\frac{3481}{39999200004}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{59}{199998}\right)^{2}}=\sqrt{-\frac{32396195}{39999200004}}
Take the square root of both sides of the equation.
x-\frac{59}{199998}=\frac{\sqrt{32396195}i}{199998} x-\frac{59}{199998}=-\frac{\sqrt{32396195}i}{199998}
Simplify.
x=\frac{59+\sqrt{32396195}i}{199998} x=\frac{-\sqrt{32396195}i+59}{199998}
Add \frac{59}{199998} to both sides of the equation.