Solve for x
x = \frac{\sqrt{18521} - 29}{104} \approx 1.029729622
x=\frac{-\sqrt{18521}-29}{104}\approx -1.58742193
Graph
Share
Copied to clipboard
4x+52x^{2}-85=-25x
Subtract 85 from both sides.
4x+52x^{2}-85+25x=0
Add 25x to both sides.
29x+52x^{2}-85=0
Combine 4x and 25x to get 29x.
52x^{2}+29x-85=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-29±\sqrt{29^{2}-4\times 52\left(-85\right)}}{2\times 52}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 52 for a, 29 for b, and -85 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-29±\sqrt{841-4\times 52\left(-85\right)}}{2\times 52}
Square 29.
x=\frac{-29±\sqrt{841-208\left(-85\right)}}{2\times 52}
Multiply -4 times 52.
x=\frac{-29±\sqrt{841+17680}}{2\times 52}
Multiply -208 times -85.
x=\frac{-29±\sqrt{18521}}{2\times 52}
Add 841 to 17680.
x=\frac{-29±\sqrt{18521}}{104}
Multiply 2 times 52.
x=\frac{\sqrt{18521}-29}{104}
Now solve the equation x=\frac{-29±\sqrt{18521}}{104} when ± is plus. Add -29 to \sqrt{18521}.
x=\frac{-\sqrt{18521}-29}{104}
Now solve the equation x=\frac{-29±\sqrt{18521}}{104} when ± is minus. Subtract \sqrt{18521} from -29.
x=\frac{\sqrt{18521}-29}{104} x=\frac{-\sqrt{18521}-29}{104}
The equation is now solved.
4x+52x^{2}+25x=85
Add 25x to both sides.
29x+52x^{2}=85
Combine 4x and 25x to get 29x.
52x^{2}+29x=85
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{52x^{2}+29x}{52}=\frac{85}{52}
Divide both sides by 52.
x^{2}+\frac{29}{52}x=\frac{85}{52}
Dividing by 52 undoes the multiplication by 52.
x^{2}+\frac{29}{52}x+\left(\frac{29}{104}\right)^{2}=\frac{85}{52}+\left(\frac{29}{104}\right)^{2}
Divide \frac{29}{52}, the coefficient of the x term, by 2 to get \frac{29}{104}. Then add the square of \frac{29}{104} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{29}{52}x+\frac{841}{10816}=\frac{85}{52}+\frac{841}{10816}
Square \frac{29}{104} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{29}{52}x+\frac{841}{10816}=\frac{18521}{10816}
Add \frac{85}{52} to \frac{841}{10816} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{29}{104}\right)^{2}=\frac{18521}{10816}
Factor x^{2}+\frac{29}{52}x+\frac{841}{10816}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{29}{104}\right)^{2}}=\sqrt{\frac{18521}{10816}}
Take the square root of both sides of the equation.
x+\frac{29}{104}=\frac{\sqrt{18521}}{104} x+\frac{29}{104}=-\frac{\sqrt{18521}}{104}
Simplify.
x=\frac{\sqrt{18521}-29}{104} x=\frac{-\sqrt{18521}-29}{104}
Subtract \frac{29}{104} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}