Solve for x
x=\sqrt{89}+11\approx 20.433981132
x=11-\sqrt{89}\approx 1.566018868
Graph
Share
Copied to clipboard
4x+40x-2x^{2}=64
Use the distributive property to multiply 2x by 20-x.
44x-2x^{2}=64
Combine 4x and 40x to get 44x.
44x-2x^{2}-64=0
Subtract 64 from both sides.
-2x^{2}+44x-64=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-44±\sqrt{44^{2}-4\left(-2\right)\left(-64\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 44 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-44±\sqrt{1936-4\left(-2\right)\left(-64\right)}}{2\left(-2\right)}
Square 44.
x=\frac{-44±\sqrt{1936+8\left(-64\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-44±\sqrt{1936-512}}{2\left(-2\right)}
Multiply 8 times -64.
x=\frac{-44±\sqrt{1424}}{2\left(-2\right)}
Add 1936 to -512.
x=\frac{-44±4\sqrt{89}}{2\left(-2\right)}
Take the square root of 1424.
x=\frac{-44±4\sqrt{89}}{-4}
Multiply 2 times -2.
x=\frac{4\sqrt{89}-44}{-4}
Now solve the equation x=\frac{-44±4\sqrt{89}}{-4} when ± is plus. Add -44 to 4\sqrt{89}.
x=11-\sqrt{89}
Divide -44+4\sqrt{89} by -4.
x=\frac{-4\sqrt{89}-44}{-4}
Now solve the equation x=\frac{-44±4\sqrt{89}}{-4} when ± is minus. Subtract 4\sqrt{89} from -44.
x=\sqrt{89}+11
Divide -44-4\sqrt{89} by -4.
x=11-\sqrt{89} x=\sqrt{89}+11
The equation is now solved.
4x+40x-2x^{2}=64
Use the distributive property to multiply 2x by 20-x.
44x-2x^{2}=64
Combine 4x and 40x to get 44x.
-2x^{2}+44x=64
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+44x}{-2}=\frac{64}{-2}
Divide both sides by -2.
x^{2}+\frac{44}{-2}x=\frac{64}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-22x=\frac{64}{-2}
Divide 44 by -2.
x^{2}-22x=-32
Divide 64 by -2.
x^{2}-22x+\left(-11\right)^{2}=-32+\left(-11\right)^{2}
Divide -22, the coefficient of the x term, by 2 to get -11. Then add the square of -11 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-22x+121=-32+121
Square -11.
x^{2}-22x+121=89
Add -32 to 121.
\left(x-11\right)^{2}=89
Factor x^{2}-22x+121. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-11\right)^{2}}=\sqrt{89}
Take the square root of both sides of the equation.
x-11=\sqrt{89} x-11=-\sqrt{89}
Simplify.
x=\sqrt{89}+11 x=11-\sqrt{89}
Add 11 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}