Solve for x
x=-\frac{26}{31}\approx -0.838709677
Graph
Share
Copied to clipboard
4x+10\times \frac{5}{3}x+10\times \frac{7}{3}=6
Use the distributive property to multiply 10 by \frac{5}{3}x+\frac{7}{3}.
4x+\frac{10\times 5}{3}x+10\times \frac{7}{3}=6
Express 10\times \frac{5}{3} as a single fraction.
4x+\frac{50}{3}x+10\times \frac{7}{3}=6
Multiply 10 and 5 to get 50.
4x+\frac{50}{3}x+\frac{10\times 7}{3}=6
Express 10\times \frac{7}{3} as a single fraction.
4x+\frac{50}{3}x+\frac{70}{3}=6
Multiply 10 and 7 to get 70.
\frac{62}{3}x+\frac{70}{3}=6
Combine 4x and \frac{50}{3}x to get \frac{62}{3}x.
\frac{62}{3}x=6-\frac{70}{3}
Subtract \frac{70}{3} from both sides.
\frac{62}{3}x=\frac{18}{3}-\frac{70}{3}
Convert 6 to fraction \frac{18}{3}.
\frac{62}{3}x=\frac{18-70}{3}
Since \frac{18}{3} and \frac{70}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{62}{3}x=-\frac{52}{3}
Subtract 70 from 18 to get -52.
x=-\frac{52}{3}\times \frac{3}{62}
Multiply both sides by \frac{3}{62}, the reciprocal of \frac{62}{3}.
x=\frac{-52\times 3}{3\times 62}
Multiply -\frac{52}{3} times \frac{3}{62} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-52}{62}
Cancel out 3 in both numerator and denominator.
x=-\frac{26}{31}
Reduce the fraction \frac{-52}{62} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}