Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-6x^{2}+4x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-6\right)}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 4 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-6\right)}}{2\left(-6\right)}
Square 4.
x=\frac{-4±\sqrt{16+24}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-4±\sqrt{40}}{2\left(-6\right)}
Add 16 to 24.
x=\frac{-4±2\sqrt{10}}{2\left(-6\right)}
Take the square root of 40.
x=\frac{-4±2\sqrt{10}}{-12}
Multiply 2 times -6.
x=\frac{2\sqrt{10}-4}{-12}
Now solve the equation x=\frac{-4±2\sqrt{10}}{-12} when ± is plus. Add -4 to 2\sqrt{10}.
x=-\frac{\sqrt{10}}{6}+\frac{1}{3}
Divide -4+2\sqrt{10} by -12.
x=\frac{-2\sqrt{10}-4}{-12}
Now solve the equation x=\frac{-4±2\sqrt{10}}{-12} when ± is minus. Subtract 2\sqrt{10} from -4.
x=\frac{\sqrt{10}}{6}+\frac{1}{3}
Divide -4-2\sqrt{10} by -12.
x=-\frac{\sqrt{10}}{6}+\frac{1}{3} x=\frac{\sqrt{10}}{6}+\frac{1}{3}
The equation is now solved.
-6x^{2}+4x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-6x^{2}+4x+1-1=-1
Subtract 1 from both sides of the equation.
-6x^{2}+4x=-1
Subtracting 1 from itself leaves 0.
\frac{-6x^{2}+4x}{-6}=-\frac{1}{-6}
Divide both sides by -6.
x^{2}+\frac{4}{-6}x=-\frac{1}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}-\frac{2}{3}x=-\frac{1}{-6}
Reduce the fraction \frac{4}{-6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{2}{3}x=\frac{1}{6}
Divide -1 by -6.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\frac{1}{6}+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{1}{6}+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{5}{18}
Add \frac{1}{6} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{3}\right)^{2}=\frac{5}{18}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{5}{18}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{\sqrt{10}}{6} x-\frac{1}{3}=-\frac{\sqrt{10}}{6}
Simplify.
x=\frac{\sqrt{10}}{6}+\frac{1}{3} x=-\frac{\sqrt{10}}{6}+\frac{1}{3}
Add \frac{1}{3} to both sides of the equation.