Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x+x^{2}-x-20+15=\left(3-x\right)\left(x+3\right)+\left(x+6\right)\left(x-3\right)
Use the distributive property to multiply x-5 by x+4 and combine like terms.
3x+x^{2}-20+15=\left(3-x\right)\left(x+3\right)+\left(x+6\right)\left(x-3\right)
Combine 4x and -x to get 3x.
3x+x^{2}-5=\left(3-x\right)\left(x+3\right)+\left(x+6\right)\left(x-3\right)
Add -20 and 15 to get -5.
3x+x^{2}-5=9-x^{2}+\left(x+6\right)\left(x-3\right)
Consider \left(3-x\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
3x+x^{2}-5=9-x^{2}+x^{2}+3x-18
Use the distributive property to multiply x+6 by x-3 and combine like terms.
3x+x^{2}-5=9+3x-18
Combine -x^{2} and x^{2} to get 0.
3x+x^{2}-5=-9+3x
Subtract 18 from 9 to get -9.
3x+x^{2}-5-3x=-9
Subtract 3x from both sides.
x^{2}-5=-9
Combine 3x and -3x to get 0.
x^{2}=-9+5
Add 5 to both sides.
x^{2}=-4
Add -9 and 5 to get -4.
x=2i x=-2i
The equation is now solved.
4x+x^{2}-x-20+15=\left(3-x\right)\left(x+3\right)+\left(x+6\right)\left(x-3\right)
Use the distributive property to multiply x-5 by x+4 and combine like terms.
3x+x^{2}-20+15=\left(3-x\right)\left(x+3\right)+\left(x+6\right)\left(x-3\right)
Combine 4x and -x to get 3x.
3x+x^{2}-5=\left(3-x\right)\left(x+3\right)+\left(x+6\right)\left(x-3\right)
Add -20 and 15 to get -5.
3x+x^{2}-5=9-x^{2}+\left(x+6\right)\left(x-3\right)
Consider \left(3-x\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
3x+x^{2}-5=9-x^{2}+x^{2}+3x-18
Use the distributive property to multiply x+6 by x-3 and combine like terms.
3x+x^{2}-5=9+3x-18
Combine -x^{2} and x^{2} to get 0.
3x+x^{2}-5=-9+3x
Subtract 18 from 9 to get -9.
3x+x^{2}-5-\left(-9\right)=3x
Subtract -9 from both sides.
3x+x^{2}-5+9=3x
The opposite of -9 is 9.
3x+x^{2}-5+9-3x=0
Subtract 3x from both sides.
3x+x^{2}+4-3x=0
Add -5 and 9 to get 4.
x^{2}+4=0
Combine 3x and -3x to get 0.
x=\frac{0±\sqrt{0^{2}-4\times 4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4}}{2}
Square 0.
x=\frac{0±\sqrt{-16}}{2}
Multiply -4 times 4.
x=\frac{0±4i}{2}
Take the square root of -16.
x=2i
Now solve the equation x=\frac{0±4i}{2} when ± is plus.
x=-2i
Now solve the equation x=\frac{0±4i}{2} when ± is minus.
x=2i x=-2i
The equation is now solved.