Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(4x+\frac{3}{2}\right)^{2}=\left(\sqrt{x}\right)^{2}
Square both sides of the equation.
16x^{2}+12x+\frac{9}{4}=\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4x+\frac{3}{2}\right)^{2}.
16x^{2}+12x+\frac{9}{4}=x
Calculate \sqrt{x} to the power of 2 and get x.
16x^{2}+12x+\frac{9}{4}-x=0
Subtract x from both sides.
16x^{2}+11x+\frac{9}{4}=0
Combine 12x and -x to get 11x.
x=\frac{-11±\sqrt{11^{2}-4\times 16\times \frac{9}{4}}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 11 for b, and \frac{9}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 16\times \frac{9}{4}}}{2\times 16}
Square 11.
x=\frac{-11±\sqrt{121-64\times \frac{9}{4}}}{2\times 16}
Multiply -4 times 16.
x=\frac{-11±\sqrt{121-144}}{2\times 16}
Multiply -64 times \frac{9}{4}.
x=\frac{-11±\sqrt{-23}}{2\times 16}
Add 121 to -144.
x=\frac{-11±\sqrt{23}i}{2\times 16}
Take the square root of -23.
x=\frac{-11±\sqrt{23}i}{32}
Multiply 2 times 16.
x=\frac{-11+\sqrt{23}i}{32}
Now solve the equation x=\frac{-11±\sqrt{23}i}{32} when ± is plus. Add -11 to i\sqrt{23}.
x=\frac{-\sqrt{23}i-11}{32}
Now solve the equation x=\frac{-11±\sqrt{23}i}{32} when ± is minus. Subtract i\sqrt{23} from -11.
x=\frac{-11+\sqrt{23}i}{32} x=\frac{-\sqrt{23}i-11}{32}
The equation is now solved.
4\times \frac{-11+\sqrt{23}i}{32}+\frac{3}{2}=\sqrt{\frac{-11+\sqrt{23}i}{32}}
Substitute \frac{-11+\sqrt{23}i}{32} for x in the equation 4x+\frac{3}{2}=\sqrt{x}.
\frac{1}{8}+\frac{1}{8}i\times 23^{\frac{1}{2}}=\frac{1}{8}+\frac{1}{8}i\times 23^{\frac{1}{2}}
Simplify. The value x=\frac{-11+\sqrt{23}i}{32} satisfies the equation.
4\times \frac{-\sqrt{23}i-11}{32}+\frac{3}{2}=\sqrt{\frac{-\sqrt{23}i-11}{32}}
Substitute \frac{-\sqrt{23}i-11}{32} for x in the equation 4x+\frac{3}{2}=\sqrt{x}.
-\frac{1}{8}i\times 23^{\frac{1}{2}}+\frac{1}{8}=-\left(\frac{1}{8}-\frac{1}{8}i\times 23^{\frac{1}{2}}\right)
Simplify. The value x=\frac{-\sqrt{23}i-11}{32} does not satisfy the equation.
x=\frac{-11+\sqrt{23}i}{32}
Equation 4x+\frac{3}{2}=\sqrt{x} has a unique solution.