Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}=225
Multiply x and x to get x^{2}.
x^{2}=\frac{225}{4}
Divide both sides by 4.
x=\frac{15}{2} x=-\frac{15}{2}
Take the square root of both sides of the equation.
4x^{2}=225
Multiply x and x to get x^{2}.
4x^{2}-225=0
Subtract 225 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-225\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-225\right)}}{2\times 4}
Square 0.
x=\frac{0±\sqrt{-16\left(-225\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{0±\sqrt{3600}}{2\times 4}
Multiply -16 times -225.
x=\frac{0±60}{2\times 4}
Take the square root of 3600.
x=\frac{0±60}{8}
Multiply 2 times 4.
x=\frac{15}{2}
Now solve the equation x=\frac{0±60}{8} when ± is plus. Reduce the fraction \frac{60}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{15}{2}
Now solve the equation x=\frac{0±60}{8} when ± is minus. Reduce the fraction \frac{-60}{8} to lowest terms by extracting and canceling out 4.
x=\frac{15}{2} x=-\frac{15}{2}
The equation is now solved.