Solve for x
x = \frac{3 \sqrt{257} - 3}{16} \approx 2.818353664
x=\frac{-3\sqrt{257}-3}{16}\approx -3.193353664
Graph
Share
Copied to clipboard
4x^{2}\times 2+3x=72
Multiply x and x to get x^{2}.
8x^{2}+3x=72
Multiply 4 and 2 to get 8.
8x^{2}+3x-72=0
Subtract 72 from both sides.
x=\frac{-3±\sqrt{3^{2}-4\times 8\left(-72\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 3 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 8\left(-72\right)}}{2\times 8}
Square 3.
x=\frac{-3±\sqrt{9-32\left(-72\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-3±\sqrt{9+2304}}{2\times 8}
Multiply -32 times -72.
x=\frac{-3±\sqrt{2313}}{2\times 8}
Add 9 to 2304.
x=\frac{-3±3\sqrt{257}}{2\times 8}
Take the square root of 2313.
x=\frac{-3±3\sqrt{257}}{16}
Multiply 2 times 8.
x=\frac{3\sqrt{257}-3}{16}
Now solve the equation x=\frac{-3±3\sqrt{257}}{16} when ± is plus. Add -3 to 3\sqrt{257}.
x=\frac{-3\sqrt{257}-3}{16}
Now solve the equation x=\frac{-3±3\sqrt{257}}{16} when ± is minus. Subtract 3\sqrt{257} from -3.
x=\frac{3\sqrt{257}-3}{16} x=\frac{-3\sqrt{257}-3}{16}
The equation is now solved.
4x^{2}\times 2+3x=72
Multiply x and x to get x^{2}.
8x^{2}+3x=72
Multiply 4 and 2 to get 8.
\frac{8x^{2}+3x}{8}=\frac{72}{8}
Divide both sides by 8.
x^{2}+\frac{3}{8}x=\frac{72}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+\frac{3}{8}x=9
Divide 72 by 8.
x^{2}+\frac{3}{8}x+\left(\frac{3}{16}\right)^{2}=9+\left(\frac{3}{16}\right)^{2}
Divide \frac{3}{8}, the coefficient of the x term, by 2 to get \frac{3}{16}. Then add the square of \frac{3}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{8}x+\frac{9}{256}=9+\frac{9}{256}
Square \frac{3}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{8}x+\frac{9}{256}=\frac{2313}{256}
Add 9 to \frac{9}{256}.
\left(x+\frac{3}{16}\right)^{2}=\frac{2313}{256}
Factor x^{2}+\frac{3}{8}x+\frac{9}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{16}\right)^{2}}=\sqrt{\frac{2313}{256}}
Take the square root of both sides of the equation.
x+\frac{3}{16}=\frac{3\sqrt{257}}{16} x+\frac{3}{16}=-\frac{3\sqrt{257}}{16}
Simplify.
x=\frac{3\sqrt{257}-3}{16} x=\frac{-3\sqrt{257}-3}{16}
Subtract \frac{3}{16} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}