Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x^{2}+4x=5
Use the distributive property to multiply 4x by 3x+1.
12x^{2}+4x-5=0
Subtract 5 from both sides.
x=\frac{-4±\sqrt{4^{2}-4\times 12\left(-5\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 4 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 12\left(-5\right)}}{2\times 12}
Square 4.
x=\frac{-4±\sqrt{16-48\left(-5\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-4±\sqrt{16+240}}{2\times 12}
Multiply -48 times -5.
x=\frac{-4±\sqrt{256}}{2\times 12}
Add 16 to 240.
x=\frac{-4±16}{2\times 12}
Take the square root of 256.
x=\frac{-4±16}{24}
Multiply 2 times 12.
x=\frac{12}{24}
Now solve the equation x=\frac{-4±16}{24} when ± is plus. Add -4 to 16.
x=\frac{1}{2}
Reduce the fraction \frac{12}{24} to lowest terms by extracting and canceling out 12.
x=-\frac{20}{24}
Now solve the equation x=\frac{-4±16}{24} when ± is minus. Subtract 16 from -4.
x=-\frac{5}{6}
Reduce the fraction \frac{-20}{24} to lowest terms by extracting and canceling out 4.
x=\frac{1}{2} x=-\frac{5}{6}
The equation is now solved.
12x^{2}+4x=5
Use the distributive property to multiply 4x by 3x+1.
\frac{12x^{2}+4x}{12}=\frac{5}{12}
Divide both sides by 12.
x^{2}+\frac{4}{12}x=\frac{5}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}+\frac{1}{3}x=\frac{5}{12}
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{5}{12}+\left(\frac{1}{6}\right)^{2}
Divide \frac{1}{3}, the coefficient of the x term, by 2 to get \frac{1}{6}. Then add the square of \frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{5}{12}+\frac{1}{36}
Square \frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{4}{9}
Add \frac{5}{12} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{6}\right)^{2}=\frac{4}{9}
Factor x^{2}+\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{4}{9}}
Take the square root of both sides of the equation.
x+\frac{1}{6}=\frac{2}{3} x+\frac{1}{6}=-\frac{2}{3}
Simplify.
x=\frac{1}{2} x=-\frac{5}{6}
Subtract \frac{1}{6} from both sides of the equation.