Solve for a
a=-\frac{\left(x-8\right)\left(3-20x-4x^{2}\right)}{x+5}
x\neq 8\text{ and }x\neq -5
Graph
Share
Copied to clipboard
4x\left(x-8\right)\left(x+5\right)=\left(x+5\right)a+\left(x-8\right)\times 3
Multiply both sides of the equation by \left(x-8\right)\left(x+5\right), the least common multiple of x-8,x+5.
\left(4x^{2}-32x\right)\left(x+5\right)=\left(x+5\right)a+\left(x-8\right)\times 3
Use the distributive property to multiply 4x by x-8.
4x^{3}-12x^{2}-160x=\left(x+5\right)a+\left(x-8\right)\times 3
Use the distributive property to multiply 4x^{2}-32x by x+5 and combine like terms.
4x^{3}-12x^{2}-160x=xa+5a+\left(x-8\right)\times 3
Use the distributive property to multiply x+5 by a.
4x^{3}-12x^{2}-160x=xa+5a+3x-24
Use the distributive property to multiply x-8 by 3.
xa+5a+3x-24=4x^{3}-12x^{2}-160x
Swap sides so that all variable terms are on the left hand side.
xa+5a-24=4x^{3}-12x^{2}-160x-3x
Subtract 3x from both sides.
xa+5a-24=4x^{3}-12x^{2}-163x
Combine -160x and -3x to get -163x.
xa+5a=4x^{3}-12x^{2}-163x+24
Add 24 to both sides.
\left(x+5\right)a=4x^{3}-12x^{2}-163x+24
Combine all terms containing a.
\frac{\left(x+5\right)a}{x+5}=\frac{\left(x-8\right)\left(4x^{2}+20x-3\right)}{x+5}
Divide both sides by x+5.
a=\frac{\left(x-8\right)\left(4x^{2}+20x-3\right)}{x+5}
Dividing by x+5 undoes the multiplication by x+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}