Solve for x
x=\frac{40\sqrt{317809}-22469}{4991}\approx 0.016193227
x=\frac{-40\sqrt{317809}-22469}{4991}\approx -9.02000008
Graph
Share
Copied to clipboard
4991x^{2}+44938x-729=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-44938±\sqrt{44938^{2}-4\times 4991\left(-729\right)}}{2\times 4991}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4991 for a, 44938 for b, and -729 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-44938±\sqrt{2019423844-4\times 4991\left(-729\right)}}{2\times 4991}
Square 44938.
x=\frac{-44938±\sqrt{2019423844-19964\left(-729\right)}}{2\times 4991}
Multiply -4 times 4991.
x=\frac{-44938±\sqrt{2019423844+14553756}}{2\times 4991}
Multiply -19964 times -729.
x=\frac{-44938±\sqrt{2033977600}}{2\times 4991}
Add 2019423844 to 14553756.
x=\frac{-44938±80\sqrt{317809}}{2\times 4991}
Take the square root of 2033977600.
x=\frac{-44938±80\sqrt{317809}}{9982}
Multiply 2 times 4991.
x=\frac{80\sqrt{317809}-44938}{9982}
Now solve the equation x=\frac{-44938±80\sqrt{317809}}{9982} when ± is plus. Add -44938 to 80\sqrt{317809}.
x=\frac{40\sqrt{317809}-22469}{4991}
Divide -44938+80\sqrt{317809} by 9982.
x=\frac{-80\sqrt{317809}-44938}{9982}
Now solve the equation x=\frac{-44938±80\sqrt{317809}}{9982} when ± is minus. Subtract 80\sqrt{317809} from -44938.
x=\frac{-40\sqrt{317809}-22469}{4991}
Divide -44938-80\sqrt{317809} by 9982.
x=\frac{40\sqrt{317809}-22469}{4991} x=\frac{-40\sqrt{317809}-22469}{4991}
The equation is now solved.
4991x^{2}+44938x-729=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4991x^{2}+44938x-729-\left(-729\right)=-\left(-729\right)
Add 729 to both sides of the equation.
4991x^{2}+44938x=-\left(-729\right)
Subtracting -729 from itself leaves 0.
4991x^{2}+44938x=729
Subtract -729 from 0.
\frac{4991x^{2}+44938x}{4991}=\frac{729}{4991}
Divide both sides by 4991.
x^{2}+\frac{44938}{4991}x=\frac{729}{4991}
Dividing by 4991 undoes the multiplication by 4991.
x^{2}+\frac{44938}{4991}x+\left(\frac{22469}{4991}\right)^{2}=\frac{729}{4991}+\left(\frac{22469}{4991}\right)^{2}
Divide \frac{44938}{4991}, the coefficient of the x term, by 2 to get \frac{22469}{4991}. Then add the square of \frac{22469}{4991} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{44938}{4991}x+\frac{504855961}{24910081}=\frac{729}{4991}+\frac{504855961}{24910081}
Square \frac{22469}{4991} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{44938}{4991}x+\frac{504855961}{24910081}=\frac{508494400}{24910081}
Add \frac{729}{4991} to \frac{504855961}{24910081} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{22469}{4991}\right)^{2}=\frac{508494400}{24910081}
Factor x^{2}+\frac{44938}{4991}x+\frac{504855961}{24910081}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{22469}{4991}\right)^{2}}=\sqrt{\frac{508494400}{24910081}}
Take the square root of both sides of the equation.
x+\frac{22469}{4991}=\frac{40\sqrt{317809}}{4991} x+\frac{22469}{4991}=-\frac{40\sqrt{317809}}{4991}
Simplify.
x=\frac{40\sqrt{317809}-22469}{4991} x=\frac{-40\sqrt{317809}-22469}{4991}
Subtract \frac{22469}{4991} from both sides of the equation.
x ^ 2 +\frac{44938}{4991}x -\frac{729}{4991} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4991
r + s = -\frac{44938}{4991} rs = -\frac{729}{4991}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{22469}{4991} - u s = -\frac{22469}{4991} + u
Two numbers r and s sum up to -\frac{44938}{4991} exactly when the average of the two numbers is \frac{1}{2}*-\frac{44938}{4991} = -\frac{22469}{4991}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{22469}{4991} - u) (-\frac{22469}{4991} + u) = -\frac{729}{4991}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{729}{4991}
-\frac{504855961}{24910081} - u^2 = -\frac{729}{4991}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{729}{4991}--\frac{504855961}{24910081} = -\frac{508494400}{24910081}
Simplify the expression by subtracting -\frac{504855961}{24910081} on both sides
u^2 = \frac{508494400}{24910081} u = \pm\sqrt{\frac{508494400}{24910081}} = \pm \frac{\sqrt{508494400}}{4991}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{22469}{4991} - \frac{\sqrt{508494400}}{4991} = -9.020 s = -\frac{22469}{4991} + \frac{\sqrt{508494400}}{4991} = 0.016
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}