Evaluate
\frac{499}{33}\approx 15.121212121
Factor
\frac{499}{3 \cdot 11} = 15\frac{4}{33} = 15.121212121212121
Share
Copied to clipboard
\begin{array}{l}\phantom{33)}\phantom{1}\\33\overline{)499}\\\end{array}
Use the 1^{st} digit 4 from dividend 499
\begin{array}{l}\phantom{33)}0\phantom{2}\\33\overline{)499}\\\end{array}
Since 4 is less than 33, use the next digit 9 from dividend 499 and add 0 to the quotient
\begin{array}{l}\phantom{33)}0\phantom{3}\\33\overline{)499}\\\end{array}
Use the 2^{nd} digit 9 from dividend 499
\begin{array}{l}\phantom{33)}01\phantom{4}\\33\overline{)499}\\\phantom{33)}\underline{\phantom{}33\phantom{9}}\\\phantom{33)}16\\\end{array}
Find closest multiple of 33 to 49. We see that 1 \times 33 = 33 is the nearest. Now subtract 33 from 49 to get reminder 16. Add 1 to quotient.
\begin{array}{l}\phantom{33)}01\phantom{5}\\33\overline{)499}\\\phantom{33)}\underline{\phantom{}33\phantom{9}}\\\phantom{33)}169\\\end{array}
Use the 3^{rd} digit 9 from dividend 499
\begin{array}{l}\phantom{33)}015\phantom{6}\\33\overline{)499}\\\phantom{33)}\underline{\phantom{}33\phantom{9}}\\\phantom{33)}169\\\phantom{33)}\underline{\phantom{}165\phantom{}}\\\phantom{33)99}4\\\end{array}
Find closest multiple of 33 to 169. We see that 5 \times 33 = 165 is the nearest. Now subtract 165 from 169 to get reminder 4. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }4
Since 4 is less than 33, stop the division. The reminder is 4. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}