Evaluate
26
Factor
2\times 13
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)494}\\\end{array}
Use the 1^{st} digit 4 from dividend 494
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)494}\\\end{array}
Since 4 is less than 19, use the next digit 9 from dividend 494 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)494}\\\end{array}
Use the 2^{nd} digit 9 from dividend 494
\begin{array}{l}\phantom{19)}02\phantom{4}\\19\overline{)494}\\\phantom{19)}\underline{\phantom{}38\phantom{9}}\\\phantom{19)}11\\\end{array}
Find closest multiple of 19 to 49. We see that 2 \times 19 = 38 is the nearest. Now subtract 38 from 49 to get reminder 11. Add 2 to quotient.
\begin{array}{l}\phantom{19)}02\phantom{5}\\19\overline{)494}\\\phantom{19)}\underline{\phantom{}38\phantom{9}}\\\phantom{19)}114\\\end{array}
Use the 3^{rd} digit 4 from dividend 494
\begin{array}{l}\phantom{19)}026\phantom{6}\\19\overline{)494}\\\phantom{19)}\underline{\phantom{}38\phantom{9}}\\\phantom{19)}114\\\phantom{19)}\underline{\phantom{}114\phantom{}}\\\phantom{19)999}0\\\end{array}
Find closest multiple of 19 to 114. We see that 6 \times 19 = 114 is the nearest. Now subtract 114 from 114 to get reminder 0. Add 6 to quotient.
\text{Quotient: }26 \text{Reminder: }0
Since 0 is less than 19, stop the division. The reminder is 0. The topmost line 026 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}