Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

490x^{2}-1120x+240=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1120\right)±\sqrt{\left(-1120\right)^{2}-4\times 490\times 240}}{2\times 490}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 490 for a, -1120 for b, and 240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1120\right)±\sqrt{1254400-4\times 490\times 240}}{2\times 490}
Square -1120.
x=\frac{-\left(-1120\right)±\sqrt{1254400-1960\times 240}}{2\times 490}
Multiply -4 times 490.
x=\frac{-\left(-1120\right)±\sqrt{1254400-470400}}{2\times 490}
Multiply -1960 times 240.
x=\frac{-\left(-1120\right)±\sqrt{784000}}{2\times 490}
Add 1254400 to -470400.
x=\frac{-\left(-1120\right)±280\sqrt{10}}{2\times 490}
Take the square root of 784000.
x=\frac{1120±280\sqrt{10}}{2\times 490}
The opposite of -1120 is 1120.
x=\frac{1120±280\sqrt{10}}{980}
Multiply 2 times 490.
x=\frac{280\sqrt{10}+1120}{980}
Now solve the equation x=\frac{1120±280\sqrt{10}}{980} when ± is plus. Add 1120 to 280\sqrt{10}.
x=\frac{2\sqrt{10}+8}{7}
Divide 1120+280\sqrt{10} by 980.
x=\frac{1120-280\sqrt{10}}{980}
Now solve the equation x=\frac{1120±280\sqrt{10}}{980} when ± is minus. Subtract 280\sqrt{10} from 1120.
x=\frac{8-2\sqrt{10}}{7}
Divide 1120-280\sqrt{10} by 980.
x=\frac{2\sqrt{10}+8}{7} x=\frac{8-2\sqrt{10}}{7}
The equation is now solved.
490x^{2}-1120x+240=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
490x^{2}-1120x+240-240=-240
Subtract 240 from both sides of the equation.
490x^{2}-1120x=-240
Subtracting 240 from itself leaves 0.
\frac{490x^{2}-1120x}{490}=-\frac{240}{490}
Divide both sides by 490.
x^{2}+\left(-\frac{1120}{490}\right)x=-\frac{240}{490}
Dividing by 490 undoes the multiplication by 490.
x^{2}-\frac{16}{7}x=-\frac{240}{490}
Reduce the fraction \frac{-1120}{490} to lowest terms by extracting and canceling out 70.
x^{2}-\frac{16}{7}x=-\frac{24}{49}
Reduce the fraction \frac{-240}{490} to lowest terms by extracting and canceling out 10.
x^{2}-\frac{16}{7}x+\left(-\frac{8}{7}\right)^{2}=-\frac{24}{49}+\left(-\frac{8}{7}\right)^{2}
Divide -\frac{16}{7}, the coefficient of the x term, by 2 to get -\frac{8}{7}. Then add the square of -\frac{8}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{16}{7}x+\frac{64}{49}=\frac{-24+64}{49}
Square -\frac{8}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{16}{7}x+\frac{64}{49}=\frac{40}{49}
Add -\frac{24}{49} to \frac{64}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{8}{7}\right)^{2}=\frac{40}{49}
Factor x^{2}-\frac{16}{7}x+\frac{64}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8}{7}\right)^{2}}=\sqrt{\frac{40}{49}}
Take the square root of both sides of the equation.
x-\frac{8}{7}=\frac{2\sqrt{10}}{7} x-\frac{8}{7}=-\frac{2\sqrt{10}}{7}
Simplify.
x=\frac{2\sqrt{10}+8}{7} x=\frac{8-2\sqrt{10}}{7}
Add \frac{8}{7} to both sides of the equation.