Evaluate
\frac{49}{5}=9.8
Factor
\frac{7 ^ {2}}{5} = 9\frac{4}{5} = 9.8
Share
Copied to clipboard
\begin{array}{l}\phantom{50)}\phantom{1}\\50\overline{)490}\\\end{array}
Use the 1^{st} digit 4 from dividend 490
\begin{array}{l}\phantom{50)}0\phantom{2}\\50\overline{)490}\\\end{array}
Since 4 is less than 50, use the next digit 9 from dividend 490 and add 0 to the quotient
\begin{array}{l}\phantom{50)}0\phantom{3}\\50\overline{)490}\\\end{array}
Use the 2^{nd} digit 9 from dividend 490
\begin{array}{l}\phantom{50)}00\phantom{4}\\50\overline{)490}\\\end{array}
Since 49 is less than 50, use the next digit 0 from dividend 490 and add 0 to the quotient
\begin{array}{l}\phantom{50)}00\phantom{5}\\50\overline{)490}\\\end{array}
Use the 3^{rd} digit 0 from dividend 490
\begin{array}{l}\phantom{50)}009\phantom{6}\\50\overline{)490}\\\phantom{50)}\underline{\phantom{}450\phantom{}}\\\phantom{50)9}40\\\end{array}
Find closest multiple of 50 to 490. We see that 9 \times 50 = 450 is the nearest. Now subtract 450 from 490 to get reminder 40. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }40
Since 40 is less than 50, stop the division. The reminder is 40. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}