Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

49x-57y=172,57x-49y=252
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
49x-57y=172
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
49x=57y+172
Add 57y to both sides of the equation.
x=\frac{1}{49}\left(57y+172\right)
Divide both sides by 49.
x=\frac{57}{49}y+\frac{172}{49}
Multiply \frac{1}{49} times 57y+172.
57\left(\frac{57}{49}y+\frac{172}{49}\right)-49y=252
Substitute \frac{57y+172}{49} for x in the other equation, 57x-49y=252.
\frac{3249}{49}y+\frac{9804}{49}-49y=252
Multiply 57 times \frac{57y+172}{49}.
\frac{848}{49}y+\frac{9804}{49}=252
Add \frac{3249y}{49} to -49y.
\frac{848}{49}y=\frac{2544}{49}
Subtract \frac{9804}{49} from both sides of the equation.
y=3
Divide both sides of the equation by \frac{848}{49}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{57}{49}\times 3+\frac{172}{49}
Substitute 3 for y in x=\frac{57}{49}y+\frac{172}{49}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{171+172}{49}
Multiply \frac{57}{49} times 3.
x=7
Add \frac{172}{49} to \frac{171}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=7,y=3
The system is now solved.
49x-57y=172,57x-49y=252
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}49&-57\\57&-49\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}172\\252\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}49&-57\\57&-49\end{matrix}\right))\left(\begin{matrix}49&-57\\57&-49\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}49&-57\\57&-49\end{matrix}\right))\left(\begin{matrix}172\\252\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}49&-57\\57&-49\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}49&-57\\57&-49\end{matrix}\right))\left(\begin{matrix}172\\252\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}49&-57\\57&-49\end{matrix}\right))\left(\begin{matrix}172\\252\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{49}{49\left(-49\right)-\left(-57\times 57\right)}&-\frac{-57}{49\left(-49\right)-\left(-57\times 57\right)}\\-\frac{57}{49\left(-49\right)-\left(-57\times 57\right)}&\frac{49}{49\left(-49\right)-\left(-57\times 57\right)}\end{matrix}\right)\left(\begin{matrix}172\\252\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{49}{848}&\frac{57}{848}\\-\frac{57}{848}&\frac{49}{848}\end{matrix}\right)\left(\begin{matrix}172\\252\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{49}{848}\times 172+\frac{57}{848}\times 252\\-\frac{57}{848}\times 172+\frac{49}{848}\times 252\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\3\end{matrix}\right)
Do the arithmetic.
x=7,y=3
Extract the matrix elements x and y.
49x-57y=172,57x-49y=252
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
57\times 49x+57\left(-57\right)y=57\times 172,49\times 57x+49\left(-49\right)y=49\times 252
To make 49x and 57x equal, multiply all terms on each side of the first equation by 57 and all terms on each side of the second by 49.
2793x-3249y=9804,2793x-2401y=12348
Simplify.
2793x-2793x-3249y+2401y=9804-12348
Subtract 2793x-2401y=12348 from 2793x-3249y=9804 by subtracting like terms on each side of the equal sign.
-3249y+2401y=9804-12348
Add 2793x to -2793x. Terms 2793x and -2793x cancel out, leaving an equation with only one variable that can be solved.
-848y=9804-12348
Add -3249y to 2401y.
-848y=-2544
Add 9804 to -12348.
y=3
Divide both sides by -848.
57x-49\times 3=252
Substitute 3 for y in 57x-49y=252. Because the resulting equation contains only one variable, you can solve for x directly.
57x-147=252
Multiply -49 times 3.
57x=399
Add 147 to both sides of the equation.
x=7
Divide both sides by 57.
x=7,y=3
The system is now solved.