Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(49x-24\right)
Factor out x.
49x^{2}-24x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}}}{2\times 49}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±24}{2\times 49}
Take the square root of \left(-24\right)^{2}.
x=\frac{24±24}{2\times 49}
The opposite of -24 is 24.
x=\frac{24±24}{98}
Multiply 2 times 49.
x=\frac{48}{98}
Now solve the equation x=\frac{24±24}{98} when ± is plus. Add 24 to 24.
x=\frac{24}{49}
Reduce the fraction \frac{48}{98} to lowest terms by extracting and canceling out 2.
x=\frac{0}{98}
Now solve the equation x=\frac{24±24}{98} when ± is minus. Subtract 24 from 24.
x=0
Divide 0 by 98.
49x^{2}-24x=49\left(x-\frac{24}{49}\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{24}{49} for x_{1} and 0 for x_{2}.
49x^{2}-24x=49\times \frac{49x-24}{49}x
Subtract \frac{24}{49} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
49x^{2}-24x=\left(49x-24\right)x
Cancel out 49, the greatest common factor in 49 and 49.