Solve for t
t = \frac{5 \sqrt{177} - 8}{49} \approx 1.194299459
t=\frac{-5\sqrt{177}-8}{49}\approx -1.520830071
Share
Copied to clipboard
49t^{2}+16t-89=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-16±\sqrt{16^{2}-4\times 49\left(-89\right)}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, 16 for b, and -89 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-16±\sqrt{256-4\times 49\left(-89\right)}}{2\times 49}
Square 16.
t=\frac{-16±\sqrt{256-196\left(-89\right)}}{2\times 49}
Multiply -4 times 49.
t=\frac{-16±\sqrt{256+17444}}{2\times 49}
Multiply -196 times -89.
t=\frac{-16±\sqrt{17700}}{2\times 49}
Add 256 to 17444.
t=\frac{-16±10\sqrt{177}}{2\times 49}
Take the square root of 17700.
t=\frac{-16±10\sqrt{177}}{98}
Multiply 2 times 49.
t=\frac{10\sqrt{177}-16}{98}
Now solve the equation t=\frac{-16±10\sqrt{177}}{98} when ± is plus. Add -16 to 10\sqrt{177}.
t=\frac{5\sqrt{177}-8}{49}
Divide -16+10\sqrt{177} by 98.
t=\frac{-10\sqrt{177}-16}{98}
Now solve the equation t=\frac{-16±10\sqrt{177}}{98} when ± is minus. Subtract 10\sqrt{177} from -16.
t=\frac{-5\sqrt{177}-8}{49}
Divide -16-10\sqrt{177} by 98.
t=\frac{5\sqrt{177}-8}{49} t=\frac{-5\sqrt{177}-8}{49}
The equation is now solved.
49t^{2}+16t-89=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
49t^{2}+16t-89-\left(-89\right)=-\left(-89\right)
Add 89 to both sides of the equation.
49t^{2}+16t=-\left(-89\right)
Subtracting -89 from itself leaves 0.
49t^{2}+16t=89
Subtract -89 from 0.
\frac{49t^{2}+16t}{49}=\frac{89}{49}
Divide both sides by 49.
t^{2}+\frac{16}{49}t=\frac{89}{49}
Dividing by 49 undoes the multiplication by 49.
t^{2}+\frac{16}{49}t+\left(\frac{8}{49}\right)^{2}=\frac{89}{49}+\left(\frac{8}{49}\right)^{2}
Divide \frac{16}{49}, the coefficient of the x term, by 2 to get \frac{8}{49}. Then add the square of \frac{8}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{16}{49}t+\frac{64}{2401}=\frac{89}{49}+\frac{64}{2401}
Square \frac{8}{49} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{16}{49}t+\frac{64}{2401}=\frac{4425}{2401}
Add \frac{89}{49} to \frac{64}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{8}{49}\right)^{2}=\frac{4425}{2401}
Factor t^{2}+\frac{16}{49}t+\frac{64}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{8}{49}\right)^{2}}=\sqrt{\frac{4425}{2401}}
Take the square root of both sides of the equation.
t+\frac{8}{49}=\frac{5\sqrt{177}}{49} t+\frac{8}{49}=-\frac{5\sqrt{177}}{49}
Simplify.
t=\frac{5\sqrt{177}-8}{49} t=\frac{-5\sqrt{177}-8}{49}
Subtract \frac{8}{49} from both sides of the equation.
x ^ 2 +\frac{16}{49}x -\frac{89}{49} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 49
r + s = -\frac{16}{49} rs = -\frac{89}{49}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{8}{49} - u s = -\frac{8}{49} + u
Two numbers r and s sum up to -\frac{16}{49} exactly when the average of the two numbers is \frac{1}{2}*-\frac{16}{49} = -\frac{8}{49}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{8}{49} - u) (-\frac{8}{49} + u) = -\frac{89}{49}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{89}{49}
\frac{64}{2401} - u^2 = -\frac{89}{49}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{89}{49}-\frac{64}{2401} = -\frac{4425}{2401}
Simplify the expression by subtracting \frac{64}{2401} on both sides
u^2 = \frac{4425}{2401} u = \pm\sqrt{\frac{4425}{2401}} = \pm \frac{\sqrt{4425}}{49}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{8}{49} - \frac{\sqrt{4425}}{49} = -1.521 s = -\frac{8}{49} + \frac{\sqrt{4425}}{49} = 1.194
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}