Evaluate
\frac{3079}{60}\approx 51.316666667
Factor
\frac{3079}{2 ^ {2} \cdot 3 \cdot 5} = 51\frac{19}{60} = 51.31666666666667
Share
Copied to clipboard
49-\frac{8\left(-1\right)}{3}+\sqrt{4}-2+\frac{1}{4}-\frac{3}{5}
Express 8\left(-\frac{1}{3}\right) as a single fraction.
49-\frac{-8}{3}+\sqrt{4}-2+\frac{1}{4}-\frac{3}{5}
Multiply 8 and -1 to get -8.
49-\left(-\frac{8}{3}\right)+\sqrt{4}-2+\frac{1}{4}-\frac{3}{5}
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
49+\frac{8}{3}+\sqrt{4}-2+\frac{1}{4}-\frac{3}{5}
The opposite of -\frac{8}{3} is \frac{8}{3}.
\frac{147}{3}+\frac{8}{3}+\sqrt{4}-2+\frac{1}{4}-\frac{3}{5}
Convert 49 to fraction \frac{147}{3}.
\frac{147+8}{3}+\sqrt{4}-2+\frac{1}{4}-\frac{3}{5}
Since \frac{147}{3} and \frac{8}{3} have the same denominator, add them by adding their numerators.
\frac{155}{3}+\sqrt{4}-2+\frac{1}{4}-\frac{3}{5}
Add 147 and 8 to get 155.
\frac{155}{3}+2-2+\frac{1}{4}-\frac{3}{5}
Calculate the square root of 4 and get 2.
\frac{155}{3}+\frac{6}{3}-2+\frac{1}{4}-\frac{3}{5}
Convert 2 to fraction \frac{6}{3}.
\frac{155+6}{3}-2+\frac{1}{4}-\frac{3}{5}
Since \frac{155}{3} and \frac{6}{3} have the same denominator, add them by adding their numerators.
\frac{161}{3}-2+\frac{1}{4}-\frac{3}{5}
Add 155 and 6 to get 161.
\frac{161}{3}-\frac{6}{3}+\frac{1}{4}-\frac{3}{5}
Convert 2 to fraction \frac{6}{3}.
\frac{161-6}{3}+\frac{1}{4}-\frac{3}{5}
Since \frac{161}{3} and \frac{6}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{155}{3}+\frac{1}{4}-\frac{3}{5}
Subtract 6 from 161 to get 155.
\frac{620}{12}+\frac{3}{12}-\frac{3}{5}
Least common multiple of 3 and 4 is 12. Convert \frac{155}{3} and \frac{1}{4} to fractions with denominator 12.
\frac{620+3}{12}-\frac{3}{5}
Since \frac{620}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{623}{12}-\frac{3}{5}
Add 620 and 3 to get 623.
\frac{3115}{60}-\frac{36}{60}
Least common multiple of 12 and 5 is 60. Convert \frac{623}{12} and \frac{3}{5} to fractions with denominator 60.
\frac{3115-36}{60}
Since \frac{3115}{60} and \frac{36}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{3079}{60}
Subtract 36 from 3115 to get 3079.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}