Solve for x
x=\frac{\sqrt{1565}+37}{98}\approx 0.781225315
x=\frac{37-\sqrt{1565}}{98}\approx -0.026123274
Graph
Share
Copied to clipboard
49x^{2}-37x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-37\right)±\sqrt{\left(-37\right)^{2}-4\times 49\left(-1\right)}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, -37 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-37\right)±\sqrt{1369-4\times 49\left(-1\right)}}{2\times 49}
Square -37.
x=\frac{-\left(-37\right)±\sqrt{1369-196\left(-1\right)}}{2\times 49}
Multiply -4 times 49.
x=\frac{-\left(-37\right)±\sqrt{1369+196}}{2\times 49}
Multiply -196 times -1.
x=\frac{-\left(-37\right)±\sqrt{1565}}{2\times 49}
Add 1369 to 196.
x=\frac{37±\sqrt{1565}}{2\times 49}
The opposite of -37 is 37.
x=\frac{37±\sqrt{1565}}{98}
Multiply 2 times 49.
x=\frac{\sqrt{1565}+37}{98}
Now solve the equation x=\frac{37±\sqrt{1565}}{98} when ± is plus. Add 37 to \sqrt{1565}.
x=\frac{37-\sqrt{1565}}{98}
Now solve the equation x=\frac{37±\sqrt{1565}}{98} when ± is minus. Subtract \sqrt{1565} from 37.
x=\frac{\sqrt{1565}+37}{98} x=\frac{37-\sqrt{1565}}{98}
The equation is now solved.
49x^{2}-37x-1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
49x^{2}-37x-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
49x^{2}-37x=-\left(-1\right)
Subtracting -1 from itself leaves 0.
49x^{2}-37x=1
Subtract -1 from 0.
\frac{49x^{2}-37x}{49}=\frac{1}{49}
Divide both sides by 49.
x^{2}-\frac{37}{49}x=\frac{1}{49}
Dividing by 49 undoes the multiplication by 49.
x^{2}-\frac{37}{49}x+\left(-\frac{37}{98}\right)^{2}=\frac{1}{49}+\left(-\frac{37}{98}\right)^{2}
Divide -\frac{37}{49}, the coefficient of the x term, by 2 to get -\frac{37}{98}. Then add the square of -\frac{37}{98} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{37}{49}x+\frac{1369}{9604}=\frac{1}{49}+\frac{1369}{9604}
Square -\frac{37}{98} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{37}{49}x+\frac{1369}{9604}=\frac{1565}{9604}
Add \frac{1}{49} to \frac{1369}{9604} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{37}{98}\right)^{2}=\frac{1565}{9604}
Factor x^{2}-\frac{37}{49}x+\frac{1369}{9604}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{37}{98}\right)^{2}}=\sqrt{\frac{1565}{9604}}
Take the square root of both sides of the equation.
x-\frac{37}{98}=\frac{\sqrt{1565}}{98} x-\frac{37}{98}=-\frac{\sqrt{1565}}{98}
Simplify.
x=\frac{\sqrt{1565}+37}{98} x=\frac{37-\sqrt{1565}}{98}
Add \frac{37}{98} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}