Solve for x
x=\frac{2\sqrt{3}+2}{7}\approx 0.780585945
x=\frac{2-2\sqrt{3}}{7}\approx -0.209157374
Graph
Share
Copied to clipboard
49x^{2}-28x+4=12
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
49x^{2}-28x+4-12=12-12
Subtract 12 from both sides of the equation.
49x^{2}-28x+4-12=0
Subtracting 12 from itself leaves 0.
49x^{2}-28x-8=0
Subtract 12 from 4.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 49\left(-8\right)}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, -28 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 49\left(-8\right)}}{2\times 49}
Square -28.
x=\frac{-\left(-28\right)±\sqrt{784-196\left(-8\right)}}{2\times 49}
Multiply -4 times 49.
x=\frac{-\left(-28\right)±\sqrt{784+1568}}{2\times 49}
Multiply -196 times -8.
x=\frac{-\left(-28\right)±\sqrt{2352}}{2\times 49}
Add 784 to 1568.
x=\frac{-\left(-28\right)±28\sqrt{3}}{2\times 49}
Take the square root of 2352.
x=\frac{28±28\sqrt{3}}{2\times 49}
The opposite of -28 is 28.
x=\frac{28±28\sqrt{3}}{98}
Multiply 2 times 49.
x=\frac{28\sqrt{3}+28}{98}
Now solve the equation x=\frac{28±28\sqrt{3}}{98} when ± is plus. Add 28 to 28\sqrt{3}.
x=\frac{2\sqrt{3}+2}{7}
Divide 28+28\sqrt{3} by 98.
x=\frac{28-28\sqrt{3}}{98}
Now solve the equation x=\frac{28±28\sqrt{3}}{98} when ± is minus. Subtract 28\sqrt{3} from 28.
x=\frac{2-2\sqrt{3}}{7}
Divide 28-28\sqrt{3} by 98.
x=\frac{2\sqrt{3}+2}{7} x=\frac{2-2\sqrt{3}}{7}
The equation is now solved.
49x^{2}-28x+4=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
49x^{2}-28x+4-4=12-4
Subtract 4 from both sides of the equation.
49x^{2}-28x=12-4
Subtracting 4 from itself leaves 0.
49x^{2}-28x=8
Subtract 4 from 12.
\frac{49x^{2}-28x}{49}=\frac{8}{49}
Divide both sides by 49.
x^{2}+\left(-\frac{28}{49}\right)x=\frac{8}{49}
Dividing by 49 undoes the multiplication by 49.
x^{2}-\frac{4}{7}x=\frac{8}{49}
Reduce the fraction \frac{-28}{49} to lowest terms by extracting and canceling out 7.
x^{2}-\frac{4}{7}x+\left(-\frac{2}{7}\right)^{2}=\frac{8}{49}+\left(-\frac{2}{7}\right)^{2}
Divide -\frac{4}{7}, the coefficient of the x term, by 2 to get -\frac{2}{7}. Then add the square of -\frac{2}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{7}x+\frac{4}{49}=\frac{8+4}{49}
Square -\frac{2}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{7}x+\frac{4}{49}=\frac{12}{49}
Add \frac{8}{49} to \frac{4}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{7}\right)^{2}=\frac{12}{49}
Factor x^{2}-\frac{4}{7}x+\frac{4}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{7}\right)^{2}}=\sqrt{\frac{12}{49}}
Take the square root of both sides of the equation.
x-\frac{2}{7}=\frac{2\sqrt{3}}{7} x-\frac{2}{7}=-\frac{2\sqrt{3}}{7}
Simplify.
x=\frac{2\sqrt{3}+2}{7} x=\frac{2-2\sqrt{3}}{7}
Add \frac{2}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}