Solve for x
x=\frac{4\sqrt{46}-1}{49}\approx 0.533251427
x=\frac{-4\sqrt{46}-1}{49}\approx -0.574067754
Graph
Share
Copied to clipboard
49x^{2}+2x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times 49\left(-15\right)}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, 2 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 49\left(-15\right)}}{2\times 49}
Square 2.
x=\frac{-2±\sqrt{4-196\left(-15\right)}}{2\times 49}
Multiply -4 times 49.
x=\frac{-2±\sqrt{4+2940}}{2\times 49}
Multiply -196 times -15.
x=\frac{-2±\sqrt{2944}}{2\times 49}
Add 4 to 2940.
x=\frac{-2±8\sqrt{46}}{2\times 49}
Take the square root of 2944.
x=\frac{-2±8\sqrt{46}}{98}
Multiply 2 times 49.
x=\frac{8\sqrt{46}-2}{98}
Now solve the equation x=\frac{-2±8\sqrt{46}}{98} when ± is plus. Add -2 to 8\sqrt{46}.
x=\frac{4\sqrt{46}-1}{49}
Divide -2+8\sqrt{46} by 98.
x=\frac{-8\sqrt{46}-2}{98}
Now solve the equation x=\frac{-2±8\sqrt{46}}{98} when ± is minus. Subtract 8\sqrt{46} from -2.
x=\frac{-4\sqrt{46}-1}{49}
Divide -2-8\sqrt{46} by 98.
x=\frac{4\sqrt{46}-1}{49} x=\frac{-4\sqrt{46}-1}{49}
The equation is now solved.
49x^{2}+2x-15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
49x^{2}+2x-15-\left(-15\right)=-\left(-15\right)
Add 15 to both sides of the equation.
49x^{2}+2x=-\left(-15\right)
Subtracting -15 from itself leaves 0.
49x^{2}+2x=15
Subtract -15 from 0.
\frac{49x^{2}+2x}{49}=\frac{15}{49}
Divide both sides by 49.
x^{2}+\frac{2}{49}x=\frac{15}{49}
Dividing by 49 undoes the multiplication by 49.
x^{2}+\frac{2}{49}x+\left(\frac{1}{49}\right)^{2}=\frac{15}{49}+\left(\frac{1}{49}\right)^{2}
Divide \frac{2}{49}, the coefficient of the x term, by 2 to get \frac{1}{49}. Then add the square of \frac{1}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{49}x+\frac{1}{2401}=\frac{15}{49}+\frac{1}{2401}
Square \frac{1}{49} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{49}x+\frac{1}{2401}=\frac{736}{2401}
Add \frac{15}{49} to \frac{1}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{49}\right)^{2}=\frac{736}{2401}
Factor x^{2}+\frac{2}{49}x+\frac{1}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{49}\right)^{2}}=\sqrt{\frac{736}{2401}}
Take the square root of both sides of the equation.
x+\frac{1}{49}=\frac{4\sqrt{46}}{49} x+\frac{1}{49}=-\frac{4\sqrt{46}}{49}
Simplify.
x=\frac{4\sqrt{46}-1}{49} x=\frac{-4\sqrt{46}-1}{49}
Subtract \frac{1}{49} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}