Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

49x^{2}+2x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\times 49\left(-15\right)}}{2\times 49}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{4-4\times 49\left(-15\right)}}{2\times 49}
Square 2.
x=\frac{-2±\sqrt{4-196\left(-15\right)}}{2\times 49}
Multiply -4 times 49.
x=\frac{-2±\sqrt{4+2940}}{2\times 49}
Multiply -196 times -15.
x=\frac{-2±\sqrt{2944}}{2\times 49}
Add 4 to 2940.
x=\frac{-2±8\sqrt{46}}{2\times 49}
Take the square root of 2944.
x=\frac{-2±8\sqrt{46}}{98}
Multiply 2 times 49.
x=\frac{8\sqrt{46}-2}{98}
Now solve the equation x=\frac{-2±8\sqrt{46}}{98} when ± is plus. Add -2 to 8\sqrt{46}.
x=\frac{4\sqrt{46}-1}{49}
Divide -2+8\sqrt{46} by 98.
x=\frac{-8\sqrt{46}-2}{98}
Now solve the equation x=\frac{-2±8\sqrt{46}}{98} when ± is minus. Subtract 8\sqrt{46} from -2.
x=\frac{-4\sqrt{46}-1}{49}
Divide -2-8\sqrt{46} by 98.
49x^{2}+2x-15=49\left(x-\frac{4\sqrt{46}-1}{49}\right)\left(x-\frac{-4\sqrt{46}-1}{49}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1+4\sqrt{46}}{49} for x_{1} and \frac{-1-4\sqrt{46}}{49} for x_{2}.