Solve for x
x=\frac{\sqrt{617}-15}{14}\approx 0.702820335
x=\frac{-\sqrt{617}-15}{14}\approx -2.845677478
Graph
Share
Copied to clipboard
49x^{2}+105x=98
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
49x^{2}+105x-98=98-98
Subtract 98 from both sides of the equation.
49x^{2}+105x-98=0
Subtracting 98 from itself leaves 0.
x=\frac{-105±\sqrt{105^{2}-4\times 49\left(-98\right)}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, 105 for b, and -98 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-105±\sqrt{11025-4\times 49\left(-98\right)}}{2\times 49}
Square 105.
x=\frac{-105±\sqrt{11025-196\left(-98\right)}}{2\times 49}
Multiply -4 times 49.
x=\frac{-105±\sqrt{11025+19208}}{2\times 49}
Multiply -196 times -98.
x=\frac{-105±\sqrt{30233}}{2\times 49}
Add 11025 to 19208.
x=\frac{-105±7\sqrt{617}}{2\times 49}
Take the square root of 30233.
x=\frac{-105±7\sqrt{617}}{98}
Multiply 2 times 49.
x=\frac{7\sqrt{617}-105}{98}
Now solve the equation x=\frac{-105±7\sqrt{617}}{98} when ± is plus. Add -105 to 7\sqrt{617}.
x=\frac{\sqrt{617}-15}{14}
Divide -105+7\sqrt{617} by 98.
x=\frac{-7\sqrt{617}-105}{98}
Now solve the equation x=\frac{-105±7\sqrt{617}}{98} when ± is minus. Subtract 7\sqrt{617} from -105.
x=\frac{-\sqrt{617}-15}{14}
Divide -105-7\sqrt{617} by 98.
x=\frac{\sqrt{617}-15}{14} x=\frac{-\sqrt{617}-15}{14}
The equation is now solved.
49x^{2}+105x=98
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{49x^{2}+105x}{49}=\frac{98}{49}
Divide both sides by 49.
x^{2}+\frac{105}{49}x=\frac{98}{49}
Dividing by 49 undoes the multiplication by 49.
x^{2}+\frac{15}{7}x=\frac{98}{49}
Reduce the fraction \frac{105}{49} to lowest terms by extracting and canceling out 7.
x^{2}+\frac{15}{7}x=2
Divide 98 by 49.
x^{2}+\frac{15}{7}x+\left(\frac{15}{14}\right)^{2}=2+\left(\frac{15}{14}\right)^{2}
Divide \frac{15}{7}, the coefficient of the x term, by 2 to get \frac{15}{14}. Then add the square of \frac{15}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{15}{7}x+\frac{225}{196}=2+\frac{225}{196}
Square \frac{15}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{15}{7}x+\frac{225}{196}=\frac{617}{196}
Add 2 to \frac{225}{196}.
\left(x+\frac{15}{14}\right)^{2}=\frac{617}{196}
Factor x^{2}+\frac{15}{7}x+\frac{225}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{14}\right)^{2}}=\sqrt{\frac{617}{196}}
Take the square root of both sides of the equation.
x+\frac{15}{14}=\frac{\sqrt{617}}{14} x+\frac{15}{14}=-\frac{\sqrt{617}}{14}
Simplify.
x=\frac{\sqrt{617}-15}{14} x=\frac{-\sqrt{617}-15}{14}
Subtract \frac{15}{14} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}