Solve for x_0
x_{0}=\frac{5000000000000000x^{2}+160000000000000000}{78982431139869471}
Solve for x (complex solution)
x=-\sqrt{\frac{78982431139869471x_{0}}{5000000000000000}-32}
x=\sqrt{\frac{78982431139869471x_{0}}{5000000000000000}-32}
Solve for x
x=\frac{\sqrt{\frac{78982431139869471x_{0}}{1250000000000000}-128}}{2}
x=-\frac{\sqrt{\frac{78982431139869471x_{0}}{1250000000000000}-128}}{2}\text{, }x_{0}\geq \frac{160000000000000000}{78982431139869471}
Graph
Share
Copied to clipboard
49 = 81 + {(x)} ^ {2} - 2 \cdot 9 x 0.8775825682207719
Evaluate trigonometric functions in the problem
49=81+x^{2}-18x_{0}\times 0.8775825682207719
Multiply 2 and 9 to get 18.
49=81+x^{2}-15.7964862279738942x_{0}
Multiply 18 and 0.8775825682207719 to get 15.7964862279738942.
81+x^{2}-15.7964862279738942x_{0}=49
Swap sides so that all variable terms are on the left hand side.
x^{2}-15.7964862279738942x_{0}=49-81
Subtract 81 from both sides.
x^{2}-15.7964862279738942x_{0}=-32
Subtract 81 from 49 to get -32.
-15.7964862279738942x_{0}=-32-x^{2}
Subtract x^{2} from both sides.
-15.7964862279738942x_{0}=-x^{2}-32
The equation is in standard form.
\frac{-15.7964862279738942x_{0}}{-15.7964862279738942}=\frac{-x^{2}-32}{-15.7964862279738942}
Divide both sides of the equation by -15.7964862279738942, which is the same as multiplying both sides by the reciprocal of the fraction.
x_{0}=\frac{-x^{2}-32}{-15.7964862279738942}
Dividing by -15.7964862279738942 undoes the multiplication by -15.7964862279738942.
x_{0}=\frac{5000000000000000x^{2}+160000000000000000}{78982431139869471}
Divide -32-x^{2} by -15.7964862279738942 by multiplying -32-x^{2} by the reciprocal of -15.7964862279738942.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}