Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

196+56r+4r^{2}+30r=16r-4000
Multiply both sides of the equation by 4.
196+86r+4r^{2}=16r-4000
Combine 56r and 30r to get 86r.
196+86r+4r^{2}-16r=-4000
Subtract 16r from both sides.
196+70r+4r^{2}=-4000
Combine 86r and -16r to get 70r.
196+70r+4r^{2}+4000=0
Add 4000 to both sides.
4196+70r+4r^{2}=0
Add 196 and 4000 to get 4196.
4r^{2}+70r+4196=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-70±\sqrt{70^{2}-4\times 4\times 4196}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 70 for b, and 4196 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-70±\sqrt{4900-4\times 4\times 4196}}{2\times 4}
Square 70.
r=\frac{-70±\sqrt{4900-16\times 4196}}{2\times 4}
Multiply -4 times 4.
r=\frac{-70±\sqrt{4900-67136}}{2\times 4}
Multiply -16 times 4196.
r=\frac{-70±\sqrt{-62236}}{2\times 4}
Add 4900 to -67136.
r=\frac{-70±2\sqrt{15559}i}{2\times 4}
Take the square root of -62236.
r=\frac{-70±2\sqrt{15559}i}{8}
Multiply 2 times 4.
r=\frac{-70+2\sqrt{15559}i}{8}
Now solve the equation r=\frac{-70±2\sqrt{15559}i}{8} when ± is plus. Add -70 to 2i\sqrt{15559}.
r=\frac{-35+\sqrt{15559}i}{4}
Divide -70+2i\sqrt{15559} by 8.
r=\frac{-2\sqrt{15559}i-70}{8}
Now solve the equation r=\frac{-70±2\sqrt{15559}i}{8} when ± is minus. Subtract 2i\sqrt{15559} from -70.
r=\frac{-\sqrt{15559}i-35}{4}
Divide -70-2i\sqrt{15559} by 8.
r=\frac{-35+\sqrt{15559}i}{4} r=\frac{-\sqrt{15559}i-35}{4}
The equation is now solved.
196+56r+4r^{2}+30r=16r-4000
Multiply both sides of the equation by 4.
196+86r+4r^{2}=16r-4000
Combine 56r and 30r to get 86r.
196+86r+4r^{2}-16r=-4000
Subtract 16r from both sides.
196+70r+4r^{2}=-4000
Combine 86r and -16r to get 70r.
70r+4r^{2}=-4000-196
Subtract 196 from both sides.
70r+4r^{2}=-4196
Subtract 196 from -4000 to get -4196.
4r^{2}+70r=-4196
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4r^{2}+70r}{4}=-\frac{4196}{4}
Divide both sides by 4.
r^{2}+\frac{70}{4}r=-\frac{4196}{4}
Dividing by 4 undoes the multiplication by 4.
r^{2}+\frac{35}{2}r=-\frac{4196}{4}
Reduce the fraction \frac{70}{4} to lowest terms by extracting and canceling out 2.
r^{2}+\frac{35}{2}r=-1049
Divide -4196 by 4.
r^{2}+\frac{35}{2}r+\left(\frac{35}{4}\right)^{2}=-1049+\left(\frac{35}{4}\right)^{2}
Divide \frac{35}{2}, the coefficient of the x term, by 2 to get \frac{35}{4}. Then add the square of \frac{35}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}+\frac{35}{2}r+\frac{1225}{16}=-1049+\frac{1225}{16}
Square \frac{35}{4} by squaring both the numerator and the denominator of the fraction.
r^{2}+\frac{35}{2}r+\frac{1225}{16}=-\frac{15559}{16}
Add -1049 to \frac{1225}{16}.
\left(r+\frac{35}{4}\right)^{2}=-\frac{15559}{16}
Factor r^{2}+\frac{35}{2}r+\frac{1225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+\frac{35}{4}\right)^{2}}=\sqrt{-\frac{15559}{16}}
Take the square root of both sides of the equation.
r+\frac{35}{4}=\frac{\sqrt{15559}i}{4} r+\frac{35}{4}=-\frac{\sqrt{15559}i}{4}
Simplify.
r=\frac{-35+\sqrt{15559}i}{4} r=\frac{-\sqrt{15559}i-35}{4}
Subtract \frac{35}{4} from both sides of the equation.