Evaluate
\frac{610}{587}\approx 1.039182283
Factor
\frac{2 \cdot 5 \cdot 61}{587} = 1\frac{23}{587} = 1.039182282793867
Share
Copied to clipboard
\begin{array}{l}\phantom{4696)}\phantom{1}\\4696\overline{)4880}\\\end{array}
Use the 1^{st} digit 4 from dividend 4880
\begin{array}{l}\phantom{4696)}0\phantom{2}\\4696\overline{)4880}\\\end{array}
Since 4 is less than 4696, use the next digit 8 from dividend 4880 and add 0 to the quotient
\begin{array}{l}\phantom{4696)}0\phantom{3}\\4696\overline{)4880}\\\end{array}
Use the 2^{nd} digit 8 from dividend 4880
\begin{array}{l}\phantom{4696)}00\phantom{4}\\4696\overline{)4880}\\\end{array}
Since 48 is less than 4696, use the next digit 8 from dividend 4880 and add 0 to the quotient
\begin{array}{l}\phantom{4696)}00\phantom{5}\\4696\overline{)4880}\\\end{array}
Use the 3^{rd} digit 8 from dividend 4880
\begin{array}{l}\phantom{4696)}000\phantom{6}\\4696\overline{)4880}\\\end{array}
Since 488 is less than 4696, use the next digit 0 from dividend 4880 and add 0 to the quotient
\begin{array}{l}\phantom{4696)}000\phantom{7}\\4696\overline{)4880}\\\end{array}
Use the 4^{th} digit 0 from dividend 4880
\begin{array}{l}\phantom{4696)}0001\phantom{8}\\4696\overline{)4880}\\\phantom{4696)}\underline{\phantom{}4696\phantom{}}\\\phantom{4696)9}184\\\end{array}
Find closest multiple of 4696 to 4880. We see that 1 \times 4696 = 4696 is the nearest. Now subtract 4696 from 4880 to get reminder 184. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }184
Since 184 is less than 4696, stop the division. The reminder is 184. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}