Evaluate
\frac{27}{10}=2.7
Factor
\frac{3 ^ {3}}{2 \cdot 5} = 2\frac{7}{10} = 2.7
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)486}\\\end{array}
Use the 1^{st} digit 4 from dividend 486
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)486}\\\end{array}
Since 4 is less than 180, use the next digit 8 from dividend 486 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)486}\\\end{array}
Use the 2^{nd} digit 8 from dividend 486
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)486}\\\end{array}
Since 48 is less than 180, use the next digit 6 from dividend 486 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)486}\\\end{array}
Use the 3^{rd} digit 6 from dividend 486
\begin{array}{l}\phantom{180)}002\phantom{6}\\180\overline{)486}\\\phantom{180)}\underline{\phantom{}360\phantom{}}\\\phantom{180)}126\\\end{array}
Find closest multiple of 180 to 486. We see that 2 \times 180 = 360 is the nearest. Now subtract 360 from 486 to get reminder 126. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }126
Since 126 is less than 180, stop the division. The reminder is 126. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}