Solve for x
x=\frac{14\sqrt{13465}}{11163}+\frac{659794}{33489}\approx 19.847341785
Graph
Share
Copied to clipboard
-9\sqrt{4x}=104^{2}-64x-485x
Subtract 485x from both sides of the equation.
-9\sqrt{4x}=10816-64x-485x
Calculate 104 to the power of 2 and get 10816.
-9\sqrt{4x}=10816-549x
Combine -64x and -485x to get -549x.
\left(-9\sqrt{4x}\right)^{2}=\left(10816-549x\right)^{2}
Square both sides of the equation.
\left(-9\right)^{2}\left(\sqrt{4x}\right)^{2}=\left(10816-549x\right)^{2}
Expand \left(-9\sqrt{4x}\right)^{2}.
81\left(\sqrt{4x}\right)^{2}=\left(10816-549x\right)^{2}
Calculate -9 to the power of 2 and get 81.
81\times 4x=\left(10816-549x\right)^{2}
Calculate \sqrt{4x} to the power of 2 and get 4x.
324x=\left(10816-549x\right)^{2}
Multiply 81 and 4 to get 324.
324x=116985856-11875968x+301401x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10816-549x\right)^{2}.
324x-116985856=-11875968x+301401x^{2}
Subtract 116985856 from both sides.
324x-116985856+11875968x=301401x^{2}
Add 11875968x to both sides.
11876292x-116985856=301401x^{2}
Combine 324x and 11875968x to get 11876292x.
11876292x-116985856-301401x^{2}=0
Subtract 301401x^{2} from both sides.
-301401x^{2}+11876292x-116985856=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11876292±\sqrt{11876292^{2}-4\left(-301401\right)\left(-116985856\right)}}{2\left(-301401\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -301401 for a, 11876292 for b, and -116985856 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11876292±\sqrt{141046311669264-4\left(-301401\right)\left(-116985856\right)}}{2\left(-301401\right)}
Square 11876292.
x=\frac{-11876292±\sqrt{141046311669264+1205604\left(-116985856\right)}}{2\left(-301401\right)}
Multiply -4 times -301401.
x=\frac{-11876292±\sqrt{141046311669264-141038615937024}}{2\left(-301401\right)}
Multiply 1205604 times -116985856.
x=\frac{-11876292±\sqrt{7695732240}}{2\left(-301401\right)}
Add 141046311669264 to -141038615937024.
x=\frac{-11876292±756\sqrt{13465}}{2\left(-301401\right)}
Take the square root of 7695732240.
x=\frac{-11876292±756\sqrt{13465}}{-602802}
Multiply 2 times -301401.
x=\frac{756\sqrt{13465}-11876292}{-602802}
Now solve the equation x=\frac{-11876292±756\sqrt{13465}}{-602802} when ± is plus. Add -11876292 to 756\sqrt{13465}.
x=-\frac{14\sqrt{13465}}{11163}+\frac{659794}{33489}
Divide -11876292+756\sqrt{13465} by -602802.
x=\frac{-756\sqrt{13465}-11876292}{-602802}
Now solve the equation x=\frac{-11876292±756\sqrt{13465}}{-602802} when ± is minus. Subtract 756\sqrt{13465} from -11876292.
x=\frac{14\sqrt{13465}}{11163}+\frac{659794}{33489}
Divide -11876292-756\sqrt{13465} by -602802.
x=-\frac{14\sqrt{13465}}{11163}+\frac{659794}{33489} x=\frac{14\sqrt{13465}}{11163}+\frac{659794}{33489}
The equation is now solved.
485\left(-\frac{14\sqrt{13465}}{11163}+\frac{659794}{33489}\right)-9\sqrt{4\left(-\frac{14\sqrt{13465}}{11163}+\frac{659794}{33489}\right)}=104^{2}-64\left(-\frac{14\sqrt{13465}}{11163}+\frac{659794}{33489}\right)
Substitute -\frac{14\sqrt{13465}}{11163}+\frac{659794}{33489} for x in the equation 485x-9\sqrt{4x}=104^{2}-64x.
-\frac{14476}{11163}\times 13465^{\frac{1}{2}}+\frac{320009972}{33489}=\frac{319990208}{33489}+\frac{896}{11163}\times 13465^{\frac{1}{2}}
Simplify. The value x=-\frac{14\sqrt{13465}}{11163}+\frac{659794}{33489} does not satisfy the equation.
485\left(\frac{14\sqrt{13465}}{11163}+\frac{659794}{33489}\right)-9\sqrt{4\left(\frac{14\sqrt{13465}}{11163}+\frac{659794}{33489}\right)}=104^{2}-64\left(\frac{14\sqrt{13465}}{11163}+\frac{659794}{33489}\right)
Substitute \frac{14\sqrt{13465}}{11163}+\frac{659794}{33489} for x in the equation 485x-9\sqrt{4x}=104^{2}-64x.
-\frac{896}{11163}\times 13465^{\frac{1}{2}}+\frac{319990208}{33489}=\frac{319990208}{33489}-\frac{896}{11163}\times 13465^{\frac{1}{2}}
Simplify. The value x=\frac{14\sqrt{13465}}{11163}+\frac{659794}{33489} satisfies the equation.
x=\frac{14\sqrt{13465}}{11163}+\frac{659794}{33489}
Equation -9\sqrt{4x}=10816-549x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}