Evaluate
\frac{4835}{12}\approx 402.916666667
Factor
\frac{5 \cdot 967}{2 ^ {2} \cdot 3} = 402\frac{11}{12} = 402.9166666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)4835}\\\end{array}
Use the 1^{st} digit 4 from dividend 4835
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)4835}\\\end{array}
Since 4 is less than 12, use the next digit 8 from dividend 4835 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)4835}\\\end{array}
Use the 2^{nd} digit 8 from dividend 4835
\begin{array}{l}\phantom{12)}04\phantom{4}\\12\overline{)4835}\\\phantom{12)}\underline{\phantom{}48\phantom{99}}\\\phantom{12)99}0\\\end{array}
Find closest multiple of 12 to 48. We see that 4 \times 12 = 48 is the nearest. Now subtract 48 from 48 to get reminder 0. Add 4 to quotient.
\begin{array}{l}\phantom{12)}04\phantom{5}\\12\overline{)4835}\\\phantom{12)}\underline{\phantom{}48\phantom{99}}\\\phantom{12)99}3\\\end{array}
Use the 3^{rd} digit 3 from dividend 4835
\begin{array}{l}\phantom{12)}040\phantom{6}\\12\overline{)4835}\\\phantom{12)}\underline{\phantom{}48\phantom{99}}\\\phantom{12)99}3\\\end{array}
Since 3 is less than 12, use the next digit 5 from dividend 4835 and add 0 to the quotient
\begin{array}{l}\phantom{12)}040\phantom{7}\\12\overline{)4835}\\\phantom{12)}\underline{\phantom{}48\phantom{99}}\\\phantom{12)99}35\\\end{array}
Use the 4^{th} digit 5 from dividend 4835
\begin{array}{l}\phantom{12)}0402\phantom{8}\\12\overline{)4835}\\\phantom{12)}\underline{\phantom{}48\phantom{99}}\\\phantom{12)99}35\\\phantom{12)}\underline{\phantom{99}24\phantom{}}\\\phantom{12)99}11\\\end{array}
Find closest multiple of 12 to 35. We see that 2 \times 12 = 24 is the nearest. Now subtract 24 from 35 to get reminder 11. Add 2 to quotient.
\text{Quotient: }402 \text{Reminder: }11
Since 11 is less than 12, stop the division. The reminder is 11. The topmost line 0402 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 402.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}