Evaluate
\frac{241}{89}\approx 2.707865169
Factor
\frac{241}{89} = 2\frac{63}{89} = 2.707865168539326
Share
Copied to clipboard
\begin{array}{l}\phantom{178)}\phantom{1}\\178\overline{)482}\\\end{array}
Use the 1^{st} digit 4 from dividend 482
\begin{array}{l}\phantom{178)}0\phantom{2}\\178\overline{)482}\\\end{array}
Since 4 is less than 178, use the next digit 8 from dividend 482 and add 0 to the quotient
\begin{array}{l}\phantom{178)}0\phantom{3}\\178\overline{)482}\\\end{array}
Use the 2^{nd} digit 8 from dividend 482
\begin{array}{l}\phantom{178)}00\phantom{4}\\178\overline{)482}\\\end{array}
Since 48 is less than 178, use the next digit 2 from dividend 482 and add 0 to the quotient
\begin{array}{l}\phantom{178)}00\phantom{5}\\178\overline{)482}\\\end{array}
Use the 3^{rd} digit 2 from dividend 482
\begin{array}{l}\phantom{178)}002\phantom{6}\\178\overline{)482}\\\phantom{178)}\underline{\phantom{}356\phantom{}}\\\phantom{178)}126\\\end{array}
Find closest multiple of 178 to 482. We see that 2 \times 178 = 356 is the nearest. Now subtract 356 from 482 to get reminder 126. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }126
Since 126 is less than 178, stop the division. The reminder is 126. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}